.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/beams/plot_beam02.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_beams_plot_beam02.py: ====================================================== Three-span continuous beam under uniform load. ====================================================== The system is statically indeterminate but simple enough to validate deformation, reactions and internal forces. Author: Peter Mackenzie-Helnwein .. GENERATED FROM PYTHON SOURCE LINES 11-85 .. code-block:: Python from femedu.examples.Example import * from femedu.domain.System import * from femedu.domain.Node import * from femedu.elements.linear import Beam2D from femedu.materials.ElasticSection import * class ExampleBeam02(Example): def problem(self): # initialize a system model SpanLengths = [ 8.0 * 12, 10.0 * 12, 8.0 * 12 ] Nelems = 2 # number of elements params = {'E': 29000., 'A': 5, 'I':50} # define load w = -1.00 model = System() # meshing parameters Xnode = 0.0 Ynode = 0.0 Offset = 0.0 # create left node nd0 = Node(Xnode, Ynode) nd0.fixDOF('ux', 'uy') # pin support left end model += nd0 # initialization for node and element creation ndi = nd0 for SpanLength in SpanLengths: Le = SpanLength / Nelems for e in range(Nelems): # create next node Xnode += Le ndj = Node(Xnode, Ynode) model += ndj # create elements elem = Beam2D(ndi, ndj, ElasticSection(params)) model += elem # load the element with a uniform load elem.setDistLoad(w) # shift one node to the right ndi = ndj # define support(s) ndj.fixDOF('uy') # roller support right end # move on to the next span Offset = Xnode # done building the model # analyze the model model.solve() # write out report model.report() # create plots model.plot(factor=100., filename="beam02_deformed.png", show_bc=1, show_reactions=1) model.beamValuePlot('V', filename="beam02_shear.png") model.beamValuePlot('M', filename="beam02_moment.png") .. GENERATED FROM PYTHON SOURCE LINES 99-101 Run the example by creating an instance of the problem and executing it by calling :py:meth:`Example.run()` .. GENERATED FROM PYTHON SOURCE LINES 101-105 .. code-block:: Python if __name__ == "__main__": ex = ExampleBeam02() ex.run() .. rst-class:: sphx-glr-horizontal * .. image-sg:: /auto_examples/beams/images/sphx_glr_plot_beam02_001.png :alt: Deformed System (magnification=100.00) :srcset: /auto_examples/beams/images/sphx_glr_plot_beam02_001.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/beams/images/sphx_glr_plot_beam02_002.png :alt: Shear Forces :srcset: /auto_examples/beams/images/sphx_glr_plot_beam02_002.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/beams/images/sphx_glr_plot_beam02_003.png :alt: Bending Moment :srcset: /auto_examples/beams/images/sphx_glr_plot_beam02_003.png :class: sphx-glr-multi-img .. rst-class:: sphx-glr-script-out .. code-block:: none System Analysis Report ======================= Nodes: --------------------- Node_17: x: [0.000 0.000] fix: ['ux', 'uy'] u: [0.000 -0.012] Node_18: x: [48.000 0.000] u: [-0.293 0.003] Node_19: x: [96.000 0.000] fix: ['uy'] u: [0.000 -0.001] Node_20: x: [156.000 0.000] u: [-0.393 0.000] Node_21: x: [216.000 0.000] fix: ['uy'] u: [0.000 0.001] Node_22: x: [264.000 0.000] u: [-0.293 -0.003] Node_23: x: [312.000 0.000] fix: ['uy'] u: [0.000 0.012] Elements: --------------------- Beam2D: Node_17 to Node_18: material ElasticSection properties: {'E': 29000.0, 'A': 5, 'I': 50, 'nu': 0.0, 'fy': 1e+30} strain:{'axial': 0.0, 'flexure': 0.0} stress:{'axial': 0.0, 'flexure': 0.0} nodal forces: Vi:11.673913043478258 Mi:-191.99999999999994 Vj:-11.673913043478258 Mj:752.3478260869563 Beam2D: Node_18 to Node_19: material ElasticSection properties: {'E': 29000.0, 'A': 5, 'I': 50, 'nu': 0.0, 'fy': 1e+30} strain:{'axial': 0.0, 'flexure': 0.0} stress:{'axial': 0.0, 'flexure': 0.0} nodal forces: Vi:-36.32608695652174 Mi:-752.3478260869563 Vj:36.32608695652174 Mj:-991.304347826087 Beam2D: Node_19 to Node_20: material ElasticSection properties: {'E': 29000.0, 'A': 5, 'I': 50, 'nu': 0.0, 'fy': 1e+30} strain:{'axial': 0.0, 'flexure': 0.0} stress:{'axial': 0.0, 'flexure': 0.0} nodal forces: Vi:30.000000000000004 Mi:883.304347826087 Vj:-30.000000000000004 Mj:916.6956521739132 Beam2D: Node_20 to Node_21: material ElasticSection properties: {'E': 29000.0, 'A': 5, 'I': 50, 'nu': 0.0, 'fy': 1e+30} strain:{'axial': 0.0, 'flexure': 0.0} stress:{'axial': 0.0, 'flexure': 0.0} nodal forces: Vi:-30.000000000000004 Mi:-916.6956521739132 Vj:30.000000000000004 Mj:-883.304347826087 Beam2D: Node_21 to Node_22: material ElasticSection properties: {'E': 29000.0, 'A': 5, 'I': 50, 'nu': 0.0, 'fy': 1e+30} strain:{'axial': 0.0, 'flexure': 0.0} stress:{'axial': 0.0, 'flexure': 0.0} nodal forces: Vi:36.326086956521735 Mi:991.3043478260868 Vj:-36.326086956521735 Mj:752.3478260869563 Beam2D: Node_22 to Node_23: material ElasticSection properties: {'E': 29000.0, 'A': 5, 'I': 50, 'nu': 0.0, 'fy': 1e+30} strain:{'axial': 0.0, 'flexure': 0.0} stress:{'axial': 0.0, 'flexure': 0.0} nodal forces: Vi:-11.673913043478251 Mi:-752.347826086956 Vj:11.673913043478251 Mj:192.0 .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 0.058 seconds) .. _sphx_glr_download_auto_examples_beams_plot_beam02.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_beam02.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_beam02.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_beam02.zip ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_