.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/diffusion/plot_thermal01.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_diffusion_plot_thermal01.py: ========================================================== Heat transfer through a wall ========================================================== This problem demonstrates a combination of prescribed temperature on the left and prescribed flux on the right side. Using * :py:class:`mesher.PatchMesher` (see :ref:`patch_mesher_class`) * :py:class:`diffusion.Triangle` (see :ref:`diffusion_triangle_class`) * :py:class:`materials.Thermal` (see :ref:`diffusion_material_classes`) Theory --------- We shall consider a stationary heat transfer problem within a wall. The inner surface of the wall, :math:`x=0~m`, is heated to :math:`200~K`, the outer surface of the wall, :math:`x=10~m`, to :math:`300~K`. The thermal equation for the uni-directional problem can be expressed as .. math:: \Delta T = \frac{\partial^2 T}{\partial x^2} = 0 where :math:`\Delta` is the Laplace operator. The analytic solution follows as .. math:: T(x) = T_i + \nabla T \: x with .. math:: \nabla T = -\frac{1}{\lambda} q_x = -\frac{1}{\lambda} (-q_n) This solution will be compared against the finite element solution in the last figure. .. GENERATED FROM PYTHON SOURCE LINES 41-166 .. code-block:: Python import matplotlib.pyplot as plt import math import sys import numpy as np from femedu.examples.Example import * from femedu.domain import * from femedu.mesher import PatchMesher from femedu.elements.diffusion import Triangle from femedu.materials import Thermal class ExampleThermal01(Example): def problem(self): # ========== setting mesh parameters ============== Nx = 5 # number of elements through the wall Ny = 1 # number of elements parallel to the wall Lx = 10.00 # m ... wall thickness in m Ly = 1.00 # m ... wall thickness in m h = 0.10 # m ... thickness of the 2d model # ========== setting material parameters ============== params = dict( specific_heat = 900, # J/kg.K density = 2700, # kg/m3 conductivity = 235, # W/m.K thickness = h # m ) # ========== setting load parameters ============== qn = 1000.00 # W/m^2 ... uniform in-flux normal to x=Lx=const # ========== setting analysis parameters ============== target_load_level = 1.00 # reference load max_steps = 2 # number of load steps: 2 -> [0.0, 1.0] # define a list of target load levels load_levels = np.linspace(0, target_load_level, max_steps) # # ==== Build the system model ==== # model = System() # create nodes # 2 -------- 3 # | | # | | # | | | # 0 -------- 1 pts = ( ( 0, 0), # 0 (Lx, 0), # 1 ( 0, Ly), # 2 (Lx, Ly), # 3 ) mesher = PatchMesher(model, pts[0], pts[1], pts[3], pts[2]) nodes, elements = mesher.triangleMesh(Nx, Ny, Triangle, Thermal(params)) model.plot(factor=0.0, title='Uni-directional diffusion', show_reactions=0, show_bc=0, show_loads=0) model.report() # boundary condition(s) ## find nodes at x==0 left_boundary_nodes = model.findNodesAlongLine((0.0,0.0), (0.0,1.0)) for node, dist in left_boundary_nodes: node.fixDOF('T') # prescribed temperature at x=0.0 ## complete the reference load at x=Lx (right edge) right_boundary_faces = model.findFacesAlongLine((Lx, 0.0), (0.0, 1.0), orientation=+1) for _, face in right_boundary_faces: face.setFlux(qn*h) # flux is per length # perform the analysis model.setLoadFactor(1.0) model.solve() model.report() model.valuePlot('T', show_mesh=True) model.valuePlot('qx', show_mesh=True) # creating a path plot R_list = [] T_list = [] for node in nodes: X = node.getPos() T = node.getDisp('T') R_list.append(X[0]) T_list.append(T) # the analytic solution for comparison x = np.linspace(0, Lx, 21) delT = -(-qn) / params['conductivity'] T = 0.0 * (1 - x/Lx) + delT * x fig, axs = plt.subplots() axs.plot(x,T,'-b',label="analytic solution") axs.plot(R_list,T_list,'ro',label="FEM") axs.set_title('Nodal Temperature for ALL Nodes') axs.set_xlabel("X distance") axs.set_ylabel('T') axs.legend() axs.grid(True) plt.show() .. GENERATED FROM PYTHON SOURCE LINES 184-186 Run the example by creating an instance of the problem and executing it by calling :py:meth:`Example.run()` .. GENERATED FROM PYTHON SOURCE LINES 186-190 .. code-block:: Python if __name__ == "__main__": ex = ExampleThermal01() ex.run() .. rst-class:: sphx-glr-horizontal * .. image-sg:: /auto_examples/diffusion/images/sphx_glr_plot_thermal01_001.png :alt: Uni-directional diffusion :srcset: /auto_examples/diffusion/images/sphx_glr_plot_thermal01_001.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/diffusion/images/sphx_glr_plot_thermal01_002.png :alt: Contours of 'T' :srcset: /auto_examples/diffusion/images/sphx_glr_plot_thermal01_002.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/diffusion/images/sphx_glr_plot_thermal01_003.png :alt: Contours of '$q_{x}$' :srcset: /auto_examples/diffusion/images/sphx_glr_plot_thermal01_003.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/diffusion/images/sphx_glr_plot_thermal01_004.png :alt: Nodal Temperature for ALL Nodes :srcset: /auto_examples/diffusion/images/sphx_glr_plot_thermal01_004.png :class: sphx-glr-multi-img .. rst-class:: sphx-glr-script-out .. code-block:: none System Analysis Report ======================= Nodes: --------------------- Node_224: x: [0.000 0.000] u: [0.000] Node_225: x: [2.000 0.000] u: [0.000] Node_226: x: [4.000 0.000] u: [0.000] Node_227: x: [6.000 0.000] u: [0.000] Node_228: x: [8.000 0.000] u: [0.000] Node_229: x: [10.000 0.000] u: [0.000] Node_230: x: [0.000 1.000] u: [0.000] Node_231: x: [2.000 1.000] u: [0.000] Node_232: x: [4.000 1.000] u: [0.000] Node_233: x: [6.000 1.000] u: [0.000] Node_234: x: [8.000 1.000] u: [0.000] Node_235: x: [10.000 1.000] u: [0.000] Elements: --------------------- Triangle_341: nodes ( Node_224 Node_225 Node_230 ) material: Thermal grad phi: x=0.000e+00 y=0.000e+00 flux: x=0.000e+00 y=0.000e+00 Triangle_342: nodes ( Node_231 Node_230 Node_225 ) material: Thermal grad phi: x=0.000e+00 y=0.000e+00 flux: x=0.000e+00 y=0.000e+00 Triangle_343: nodes ( Node_225 Node_226 Node_231 ) material: Thermal grad phi: x=0.000e+00 y=0.000e+00 flux: x=0.000e+00 y=0.000e+00 Triangle_344: nodes ( Node_232 Node_231 Node_226 ) material: Thermal grad phi: x=0.000e+00 y=0.000e+00 flux: x=0.000e+00 y=0.000e+00 Triangle_345: nodes ( Node_226 Node_227 Node_232 ) material: Thermal grad phi: x=0.000e+00 y=0.000e+00 flux: x=0.000e+00 y=0.000e+00 Triangle_346: nodes ( Node_233 Node_232 Node_227 ) material: Thermal grad phi: x=0.000e+00 y=0.000e+00 flux: x=0.000e+00 y=0.000e+00 Triangle_347: nodes ( Node_227 Node_228 Node_233 ) material: Thermal grad phi: x=0.000e+00 y=0.000e+00 flux: x=0.000e+00 y=0.000e+00 Triangle_348: nodes ( Node_234 Node_233 Node_228 ) material: Thermal grad phi: x=0.000e+00 y=0.000e+00 flux: x=0.000e+00 y=0.000e+00 Triangle_349: nodes ( Node_228 Node_229 Node_234 ) material: Thermal grad phi: x=0.000e+00 y=0.000e+00 flux: x=0.000e+00 y=0.000e+00 Triangle_350: nodes ( Node_235 Node_234 Node_229 ) material: Thermal grad phi: x=0.000e+00 y=0.000e+00 flux: x=0.000e+00 y=0.000e+00 System Analysis Report ======================= Nodes: --------------------- Node_224: x: [0.000 0.000] fix: ['T'] u: [0.000] Node_225: x: [2.000 0.000] u: [8.511] Node_226: x: [4.000 0.000] u: [17.021] Node_227: x: [6.000 0.000] u: [25.532] Node_228: x: [8.000 0.000] u: [34.043] Node_229: x: [10.000 0.000] u: [42.553] Node_230: x: [0.000 1.000] fix: ['T'] u: [0.000] Node_231: x: [2.000 1.000] u: [8.511] Node_232: x: [4.000 1.000] u: [17.021] Node_233: x: [6.000 1.000] u: [25.532] Node_234: x: [8.000 1.000] u: [34.043] Node_235: x: [10.000 1.000] u: [42.553] Elements: --------------------- Triangle_341: nodes ( Node_224 Node_225 Node_230 ) material: Thermal grad phi: x=4.255e+00 y=0.000e+00 flux: x=-1.000e+03 y=-0.000e+00 Triangle_342: nodes ( Node_231 Node_230 Node_225 ) material: Thermal grad phi: x=4.255e+00 y=0.000e+00 flux: x=-1.000e+03 y=-0.000e+00 Triangle_343: nodes ( Node_225 Node_226 Node_231 ) material: Thermal grad phi: x=4.255e+00 y=0.000e+00 flux: x=-1.000e+03 y=-0.000e+00 Triangle_344: nodes ( Node_232 Node_231 Node_226 ) material: Thermal grad phi: x=4.255e+00 y=0.000e+00 flux: x=-1.000e+03 y=-0.000e+00 Triangle_345: nodes ( Node_226 Node_227 Node_232 ) material: Thermal grad phi: x=4.255e+00 y=0.000e+00 flux: x=-1.000e+03 y=-0.000e+00 Triangle_346: nodes ( Node_233 Node_232 Node_227 ) material: Thermal grad phi: x=4.255e+00 y=0.000e+00 flux: x=-1.000e+03 y=-0.000e+00 Triangle_347: nodes ( Node_227 Node_228 Node_233 ) material: Thermal grad phi: x=4.255e+00 y=0.000e+00 flux: x=-1.000e+03 y=-0.000e+00 Triangle_348: nodes ( Node_234 Node_233 Node_228 ) material: Thermal grad phi: x=4.255e+00 y=0.000e+00 flux: x=-1.000e+03 y=-0.000e+00 Triangle_349: nodes ( Node_228 Node_229 Node_234 ) material: Thermal grad phi: x=4.255e+00 y=0.000e+00 flux: x=-1.000e+03 y=-0.000e+00 Triangle_350: nodes ( Node_235 Node_234 Node_229 ) material: Thermal grad phi: x=4.255e+00 y=0.000e+00 flux: x=-1.000e+03 y=-0.000e+00 .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 0.120 seconds) .. _sphx_glr_download_auto_examples_diffusion_plot_thermal01.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_thermal01.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_thermal01.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_thermal01.zip ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_