.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/frames/plot_frame01.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_frames_plot_frame01.py: ====================================================== Buckling of a beam with pin-pin support ====================================================== modeled using a 2D frame element .. code:: x============x=============x <--- ^ o x ..... node === ... frame element <-- ... applied force ^ ..... pin support o ..... roller support degrees of freedom: 0 ... horizontal displacement, u 1 ... vertical displacement, v 2 ... rotation, theta .. list-table:: setting given parameters * - N = 2 - number of elements * - L = 100.0 - column length * - EA = 2000000.0 - axial stiffness * - EI = 21000.0 - flexural stiffness * - w = 0.1 - applied lateral load Author: Peter Mackenzie-Helnwein .. GENERATED FROM PYTHON SOURCE LINES 40-196 .. code-block:: Python from femedu.examples.Example import * from femedu.domain import * from femedu.solver.NewtonRaphsonSolver import * from femedu.elements.finite.Frame2D import * from femedu.materials.ElasticSection import * class ExampleFrame01(Example): def problem(self): # # ==== Initialization ==== # # ========== setting mesh parameters ============== N = 8 # number of elements in the mesh L = 100.0 # column free length # ========== setting material parameters ============== params = dict( E = 20000., # Young's modulus A = 100.0, # cross section area I = 10.0 # cross section moment of inertia ) # ========== setting load parameters ============== w = -0.1 # uniform lateral load on the column Pcr = np.pi**2 * params['E'] * params['I'] / L**2 # Euler buckling load # ========== setting analysis parameters ============== target_load_level = 0.99 # 99% of Euler load max_steps = 10 # solve max_steps points on the primary path w *= 0.01 Pcr *= 0.01 target_load_level = 99. # 99% of Euler load # define a list of target load levels load_levels = np.linspace(0, target_load_level, max_steps) # # ==== Build the system model ==== # model = System() model.setSolver(NewtonRaphsonSolver()) # create nodes nd0 = Node(0.0, 0.0) model += nd0 ndi = nd0 for i in range(N): # nodes ndj = Node( (i+1)*L/N, 0.0 ) model += ndj # elements elem = Frame2D(ndi, ndj, ElasticSection(params)) model += elem # ** apply the element portion of the reference load elem.setDistLoad(w) ndi = ndj # jump to next element: make current end-node the next start-node # define support(s) nd0.fixDOF('ux', 'uy') # horizontal support left end ndi.fixDOF('uy') # vertical support right end # ==== complete the reference load ==== # these are only nodal forces as part of the reference load # .. load only the upper node ndi.setLoad((-Pcr,), ('ux',)) # show model information print(model) # # ==== perform the analysis === # print("\n==== perform the analysis ===\n") # * apply the load in multiple smaller load steps # set up data recorder model.initRecorder() model.trackStability(True) # initialize the analysis: model.resetDisplacements() # set U to all zeros model.setLoadFactor(0.0) # define a known equilibrium solution model.startRecorder() detKt = [] lambdas = [] # solve for all load_levels for loadfactor in load_levels: # define node X2 as the controled node; downward direction is prescribed: model.setLoadFactor(loadfactor) model.solve(verbose=True) # stability check lambdas.append(model.loadfactor) detKt.append(model.solver.checkStability()) # report results print('+') #model.report() print("\n=== next load level ===\n") # # ==== create some nice plots === # model.report() model.plot(factor=1.0, filename="frame1_deformed.png") fig, ax = plt.subplots() ax.plot(lambdas,detKt,'--*r') ax.grid(True) ax.set_xlabel('Load factor, $ \\lambda $') ax.set_ylabel("Stability index, $ {det}\\: {\\bf K}_t $") fig.savefig("frame1_stability.png") fig.show() model.beamValuePlot("F", filename="frame1_force.png") model.beamValuePlot("V", filename="frame1_shear.png") model.beamValuePlot("M", filename="frame1_moment.png") model.plotBucklingMode(factor=10., filename="frame1_buckling_mode0.png") .. GENERATED FROM PYTHON SOURCE LINES 231-233 Run the example by creating an instance of the problem and executing it by calling :py:meth:`Example.run()` .. GENERATED FROM PYTHON SOURCE LINES 233-238 .. code-block:: Python if __name__ == "__main__": ex = ExampleFrame01() ex.run() .. rst-class:: sphx-glr-horizontal * .. image-sg:: /auto_examples/frames/images/sphx_glr_plot_frame01_001.png :alt: Deformed System (magnification=1.00) :srcset: /auto_examples/frames/images/sphx_glr_plot_frame01_001.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/frames/images/sphx_glr_plot_frame01_002.png :alt: plot frame01 :srcset: /auto_examples/frames/images/sphx_glr_plot_frame01_002.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/frames/images/sphx_glr_plot_frame01_003.png :alt: Axial Forces :srcset: /auto_examples/frames/images/sphx_glr_plot_frame01_003.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/frames/images/sphx_glr_plot_frame01_004.png :alt: Shear Forces :srcset: /auto_examples/frames/images/sphx_glr_plot_frame01_004.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/frames/images/sphx_glr_plot_frame01_005.png :alt: Bending Moment :srcset: /auto_examples/frames/images/sphx_glr_plot_frame01_005.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/frames/images/sphx_glr_plot_frame01_006.png :alt: Mode Shape for $ \lambda = 0.02 $ :srcset: /auto_examples/frames/images/sphx_glr_plot_frame01_006.png :class: sphx-glr-multi-img .. rst-class:: sphx-glr-script-out .. code-block:: none System object Node_177(x=[0 0], u=None) Node_178(x=[12.5 0], u=None) Node_179(x=[25 0], u=None) Node_180(x=[37.5 0], u=None) Node_181(x=[50 0], u=None) Node_182(x=[62.5 0], u=None) Node_183(x=[75 0], u=None) Node_184(x=[87.5 0], u=None) Node_185(x=[100 0], u=None) Frame2D(Node_177, Node_178, ElasticSection(Material)({'E': 20000.0, 'A': 100.0, 'I': 10.0, 'nu': 0.0, 'fy': 1e+30})) Frame2D(Node_178, Node_179, ElasticSection(Material)({'E': 20000.0, 'A': 100.0, 'I': 10.0, 'nu': 0.0, 'fy': 1e+30})) Frame2D(Node_179, Node_180, ElasticSection(Material)({'E': 20000.0, 'A': 100.0, 'I': 10.0, 'nu': 0.0, 'fy': 1e+30})) Frame2D(Node_180, Node_181, ElasticSection(Material)({'E': 20000.0, 'A': 100.0, 'I': 10.0, 'nu': 0.0, 'fy': 1e+30})) Frame2D(Node_181, Node_182, ElasticSection(Material)({'E': 20000.0, 'A': 100.0, 'I': 10.0, 'nu': 0.0, 'fy': 1e+30})) Frame2D(Node_182, Node_183, ElasticSection(Material)({'E': 20000.0, 'A': 100.0, 'I': 10.0, 'nu': 0.0, 'fy': 1e+30})) Frame2D(Node_183, Node_184, ElasticSection(Material)({'E': 20000.0, 'A': 100.0, 'I': 10.0, 'nu': 0.0, 'fy': 1e+30})) Frame2D(Node_184, Node_185, ElasticSection(Material)({'E': 20000.0, 'A': 100.0, 'I': 10.0, 'nu': 0.0, 'fy': 1e+30})) ==== perform the analysis === norm of the out-of-balance force: 0.0000e+00 ** Stability check: (smallest 1 eigenvalues of Kt) mode 0: 2.43 + ** Stability check: (smallest eigenvalue of Kt) = 2.432144038384929 + === next load level === norm of the out-of-balance force: 2.1717e+01 norm of the out-of-balance force: 3.9834e-02 norm of the out-of-balance force: 3.5444e-11 ** Stability check: (smallest 1 eigenvalues of Kt) mode 0: 2.16 + ** Stability check: (smallest eigenvalue of Kt) = 2.164616252659176 + === next load level === norm of the out-of-balance force: 2.1717e+01 norm of the out-of-balance force: 8.9520e-02 norm of the out-of-balance force: 2.5310e-11 ** Stability check: (smallest 1 eigenvalues of Kt) mode 0: 1.90 + ** Stability check: (smallest eigenvalue of Kt) = 1.8970864808819454 + === next load level === norm of the out-of-balance force: 2.1717e+01 norm of the out-of-balance force: 1.5323e-01 norm of the out-of-balance force: 3.3723e-13 ** Stability check: (smallest 1 eigenvalues of Kt) mode 0: 1.63 + ** Stability check: (smallest eigenvalue of Kt) = 1.6295547207467576 + === next load level === norm of the out-of-balance force: 2.1717e+01 norm of the out-of-balance force: 2.3787e-01 norm of the out-of-balance force: 3.6481e-11 ** Stability check: (smallest 1 eigenvalues of Kt) mode 0: 1.36 + ** Stability check: (smallest eigenvalue of Kt) = 1.3620209694600276 + === next load level === norm of the out-of-balance force: 2.1717e+01 norm of the out-of-balance force: 3.5578e-01 norm of the out-of-balance force: 2.7099e-11 ** Stability check: (smallest 1 eigenvalues of Kt) mode 0: 1.09 + ** Stability check: (smallest eigenvalue of Kt) = 1.0944852245738625 + === next load level === norm of the out-of-balance force: 2.1717e+01 norm of the out-of-balance force: 5.3137e-01 norm of the out-of-balance force: 4.8330e-11 ** Stability check: (smallest 1 eigenvalues of Kt) mode 0: 0.83 + ** Stability check: (smallest eigenvalue of Kt) = 0.8269474835996171 + === next load level === norm of the out-of-balance force: 2.1717e+01 norm of the out-of-balance force: 8.2064e-01 norm of the out-of-balance force: 3.9885e-12 ** Stability check: (smallest 1 eigenvalues of Kt) mode 0: 0.56 + ** Stability check: (smallest eigenvalue of Kt) = 0.5594077438288444 + === next load level === norm of the out-of-balance force: 2.1717e+01 norm of the out-of-balance force: 1.3867e+00 norm of the out-of-balance force: 5.0837e-11 ** Stability check: (smallest 1 eigenvalues of Kt) mode 0: 0.29 + ** Stability check: (smallest eigenvalue of Kt) = 0.29186600286132736 + === next load level === norm of the out-of-balance force: 2.1717e+01 norm of the out-of-balance force: 2.9907e+00 norm of the out-of-balance force: 6.8367e-09 ** Stability check: (smallest 1 eigenvalues of Kt) mode 0: 0.02 + ** Stability check: (smallest eigenvalue of Kt) = 0.024322257935527985 + === next load level === System Analysis Report ======================= Nodes: --------------------- Node_177: x: [0.000 0.000] fix: ['ux', 'uy'] u: [0.000 0.000 -2.033] Node_178: x: [12.500 0.000] u: [-0.001 -24.762 -1.878] Node_179: x: [25.000 0.000] u: [-0.002 -45.751 -1.437] Node_180: x: [37.500 0.000] u: [-0.004 -59.773 -0.778] Node_181: x: [50.000 0.000] u: [-0.005 -64.697 -0.000] Node_182: x: [62.500 0.000] u: [-0.006 -59.773 0.778] Node_183: x: [75.000 0.000] u: [-0.007 -45.751 1.437] Node_184: x: [87.500 0.000] u: [-0.009 -24.762 1.878] Node_185: x: [100.000 0.000] fix: ['uy'] P: [-1.974 0.000 0.000] u: [-0.010 0.000 2.033] Elements: --------------------- Frame2D_290: nodes ( Node_177 Node_178 ) material: ElasticSection internal forces: f0=-195.42 V0=4.33 M0=1.29 fl=-195.42 Vl=4.33 Ml=4894.46 Pw=-0.62 Mw=-1.29 Frame2D_291: nodes ( Node_178 Node_179 ) material: ElasticSection internal forces: f0=-195.42 V0=3.09 M0=4894.46 fl=-195.42 Vl=3.09 Ml=9034.77 Pw=-0.62 Mw=-1.29 Frame2D_292: nodes ( Node_179 Node_180 ) material: ElasticSection internal forces: f0=-195.42 V0=1.86 M0=9034.77 fl=-195.42 Vl=1.86 Ml=11798.12 Pw=-0.62 Mw=-1.29 Frame2D_293: nodes ( Node_180 Node_181 ) material: ElasticSection internal forces: f0=-195.42 V0=0.62 M0=11798.12 fl=-195.42 Vl=0.62 Ml=12767.97 Pw=-0.62 Mw=-1.29 Frame2D_294: nodes ( Node_181 Node_182 ) material: ElasticSection internal forces: f0=-195.42 V0=-0.62 M0=12767.97 fl=-195.42 Vl=-0.62 Ml=11798.12 Pw=-0.62 Mw=-1.29 Frame2D_295: nodes ( Node_182 Node_183 ) material: ElasticSection internal forces: f0=-195.42 V0=-1.86 M0=11798.12 fl=-195.42 Vl=-1.86 Ml=9034.77 Pw=-0.62 Mw=-1.29 Frame2D_296: nodes ( Node_183 Node_184 ) material: ElasticSection internal forces: f0=-195.42 V0=-3.09 M0=9034.77 fl=-195.42 Vl=-3.09 Ml=4894.46 Pw=-0.62 Mw=-1.29 Frame2D_297: nodes ( Node_184 Node_185 ) material: ElasticSection internal forces: f0=-195.42 V0=-4.33 M0=4894.46 fl=-195.42 Vl=-4.33 Ml=1.29 Pw=-0.62 Mw=-1.29 .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 0.195 seconds) .. _sphx_glr_download_auto_examples_frames_plot_frame01.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_frame01.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_frame01.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_frame01.zip ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_