.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/frames/plot_frame03.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_frames_plot_frame03.py: ====================================================== Buckling of a building frame ====================================================== modeled using a 2D frame element .. list-table:: setting given parameters * - N = 2 - number of elements * - L = 100.0 - column length * - EA = 2000000.0 - axial stiffness * - EI = 21000.0 - flexural stiffness * - w = 0.1 - applied lateral load Author: Peter Mackenzie-Helnwein .. GENERATED FROM PYTHON SOURCE LINES 23-190 .. code-block:: Python import matplotlib.pyplot as plt from femedu.examples.Example import * from femedu.domain import * from femedu.solver.NewtonRaphsonSolver import * from femedu.elements.finite.Frame2D import * from femedu.materials.ElasticSection import * class ExampleFrame03(Example): def problem(self): # initialize a system model N = 8 # number of elements B = 240. H = 200. E = 29000.0 A = 20.0 I = 10.0 w = 1.0 load_at_nodes_only = False # set to True to apply equivalent nodal forces and moments Ph = 0.01 # additional horizontal load per floor Ph = 0.10 # additional horizontal load per floor Ph = 1.00 # additional horizontal load per floor Ph = 0.00 # additional horizontal load per floor # ========== setting global parameters ============== target_load_level = 27 max_steps = 10 load_levels = np.linspace(0, target_load_level, max_steps) # ========= build your structural model ============= model = System() model.setSolver(NewtonRaphsonSolver()) x0 = 0.0 x1 = B / 3 x2 = 2 * B / 3 x3 = B y0 = 0.0 y1 = H / 4 y2 = 2 * H / 4 y3 = 3 * H / 4 y4 = H X10 = Node(x0, y0) X11 = Node(x0, y1) X20 = Node(x1, y0) X21 = Node(x1, y1) model.addNode(X10,X11) model.addNode(X20,X21) # columns params = {'E': E, 'A': A, 'I': I} C11 = Frame2D(X10, X11, ElasticSection(params)) C21 = Frame2D(X20, X21, ElasticSection(params)) model.addElement(C11,C21) # floors params = {'E': E, 'A': A, 'I': 8*I} F11 = Frame2D(X11, X21, ElasticSection(params)) model.addElement(F11) # fixities X10.fixDOF('ux','uy','rz') # fixed X20.fixDOF('ux','uy','rz') # fixed # reference load #Pcr = np.pi**2 * EI / L**2 model.resetLoad() # size load vector and initialize #model.addLoad(Xn, -Pcr, dof=0) # add a horizontal force (first dof only) ; remember C-style indexing: 0,1,...,(n-1) if load_at_nodes_only: # floor loading as nodal loads ... Pe = w * B/3 Mi = w * (B/3)**2 /12 X11.addLoad([-Pe/2., -Mi],['uy','rz']) X21.addLoad([-Pe/2., 0.],['uy','rz']) else: # floor loading as distributed loads ... F11.setDistLoad(-w) # wind load ... X11.addLoad([Ph],['ux']) # horizontal load # show model information print(model) print("\n==== perform the analysis ===\n") # * apply the load in multiple smaller load steps # set up data recorder model.initRecorder() model.trackStability(True) # initialize the analysis: model.resetDisplacements() # set U to all zeros model.setLoadFactor(0.0) # define a known equilibrium solution model.startRecorder() detKt = [] lambdas = [] # solve for all load_levels for loadfactor in load_levels: # define node X2 as the controled node; downward direction is prescribed: model.setLoadFactor(loadfactor) model.solve(verbose=True) # stability check lambdas.append(model.loadfactor) detKt.append(model.solver.checkStability()) # report results print('+') #model.report() print("\n=== next load level ===\n") # # ==== create some nice plots === # model.report() model.plot(factor=1.0, filename="frame3_deformed.png", show_loads=1, show_reactions=1) fig, ax = plt.subplots() ax.plot(lambdas,detKt,'--*r') ax.grid(True) ax.set_xlabel('Load factor, $ \\lambda $') ax.set_ylabel("Stability index, $ {det}\\: {\\bf K}_t $") fig.savefig("frame3_stability.png") fig.show() model.beamValuePlot("F", filename="frame3_force.png") model.beamValuePlot("V", filename="frame3_shear.png") model.beamValuePlot("M", filename="frame3_moment.png") model.plotBucklingMode(factor=25., filename="frame3_buckling_mode0.png") .. GENERATED FROM PYTHON SOURCE LINES 206-208 Run the example by creating an instance of the problem and executing it by calling :py:meth:`Example.run()` .. GENERATED FROM PYTHON SOURCE LINES 208-215 .. code-block:: Python if __name__ == "__main__": ex = ExampleFrame03() ex.run() .. rst-class:: sphx-glr-horizontal * .. image-sg:: /auto_examples/frames/images/sphx_glr_plot_frame03_001.png :alt: Deformed System (magnification=1.00) :srcset: /auto_examples/frames/images/sphx_glr_plot_frame03_001.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/frames/images/sphx_glr_plot_frame03_002.png :alt: plot frame03 :srcset: /auto_examples/frames/images/sphx_glr_plot_frame03_002.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/frames/images/sphx_glr_plot_frame03_003.png :alt: Axial Forces :srcset: /auto_examples/frames/images/sphx_glr_plot_frame03_003.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/frames/images/sphx_glr_plot_frame03_004.png :alt: Shear Forces :srcset: /auto_examples/frames/images/sphx_glr_plot_frame03_004.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/frames/images/sphx_glr_plot_frame03_005.png :alt: Bending Moment :srcset: /auto_examples/frames/images/sphx_glr_plot_frame03_005.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/frames/images/sphx_glr_plot_frame03_006.png :alt: Mode Shape for $ \lambda = -0.21 $ :srcset: /auto_examples/frames/images/sphx_glr_plot_frame03_006.png :class: sphx-glr-multi-img .. rst-class:: sphx-glr-script-out .. code-block:: none System object Node_195(x=[0 0], u=None) Node_196(x=[0 50], u=None) Node_197(x=[80 0], u=None) Node_198(x=[80 50], u=None) Frame2D(Node_195, Node_196, ElasticSection(Material)({'E': 29000.0, 'A': 20.0, 'I': 10.0, 'nu': 0.0, 'fy': 1e+30})) Frame2D(Node_197, Node_198, ElasticSection(Material)({'E': 29000.0, 'A': 20.0, 'I': 10.0, 'nu': 0.0, 'fy': 1e+30})) Frame2D(Node_196, Node_198, ElasticSection(Material)({'E': 29000.0, 'A': 20.0, 'I': 80.0, 'nu': 0.0, 'fy': 1e+30})) ==== perform the analysis === norm of the out-of-balance force: 0.0000e+00 ** Stability check: (smallest 1 eigenvalues of Kt) mode 0: 25.36 + ** Stability check: (smallest eigenvalue of Kt) = 25.36286606688344 + === next load level === norm of the out-of-balance force: 2.2691e+03 norm of the out-of-balance force: 2.7690e+01 norm of the out-of-balance force: 2.5832e-02 norm of the out-of-balance force: 5.8606e-05 norm of the out-of-balance force: 1.3290e-07 ** Stability check: (smallest 1 eigenvalues of Kt) mode 0: 22.55 + ** Stability check: (smallest eigenvalue of Kt) = 22.553344322692414 + === next load level === norm of the out-of-balance force: 2.2691e+03 norm of the out-of-balance force: 5.7335e+01 norm of the out-of-balance force: 1.0732e-01 norm of the out-of-balance force: 4.9127e-04 norm of the out-of-balance force: 2.2489e-06 norm of the out-of-balance force: 1.0194e-08 ** Stability check: (smallest 1 eigenvalues of Kt) mode 0: 19.74 + ** Stability check: (smallest eigenvalue of Kt) = 19.736675218758077 + === next load level === norm of the out-of-balance force: 2.2691e+03 norm of the out-of-balance force: 8.9173e+01 norm of the out-of-balance force: 2.5073e-01 norm of the out-of-balance force: 1.7372e-03 norm of the out-of-balance force: 1.2036e-05 norm of the out-of-balance force: 8.3463e-08 ** Stability check: (smallest 1 eigenvalues of Kt) mode 0: 16.91 + ** Stability check: (smallest eigenvalue of Kt) = 16.912579434906803 + === next load level === norm of the out-of-balance force: 2.2691e+03 norm of the out-of-balance force: 1.2348e+02 norm of the out-of-balance force: 4.6258e-01 norm of the out-of-balance force: 4.3136e-03 norm of the out-of-balance force: 4.0225e-05 norm of the out-of-balance force: 3.7546e-07 ** Stability check: (smallest 1 eigenvalues of Kt) mode 0: 14.08 + ** Stability check: (smallest eigenvalue of Kt) = 14.080761870685263 + === next load level === norm of the out-of-balance force: 2.2691e+03 norm of the out-of-balance force: 1.6058e+02 norm of the out-of-balance force: 7.4959e-01 norm of the out-of-balance force: 8.8231e-03 norm of the out-of-balance force: 1.0385e-04 norm of the out-of-balance force: 1.2223e-06 norm of the out-of-balance force: 1.4479e-08 ** Stability check: (smallest 1 eigenvalues of Kt) mode 0: 11.24 + ** Stability check: (smallest eigenvalue of Kt) = 11.240910493714765 + === next load level === norm of the out-of-balance force: 2.2691e+03 norm of the out-of-balance force: 2.0086e+02 norm of the out-of-balance force: 1.1185e+00 norm of the out-of-balance force: 1.5960e-02 norm of the out-of-balance force: 2.2773e-04 norm of the out-of-balance force: 3.2495e-06 norm of the out-of-balance force: 4.6216e-08 ** Stability check: (smallest 1 eigenvalues of Kt) mode 0: 8.39 + ** Stability check: (smallest eigenvalue of Kt) = 8.392695084552255 + === next load level === norm of the out-of-balance force: 2.2691e+03 norm of the out-of-balance force: 2.4477e+02 norm of the out-of-balance force: 1.5757e+00 norm of the out-of-balance force: 2.6511e-02 norm of the out-of-balance force: 4.4606e-04 norm of the out-of-balance force: 7.5054e-06 norm of the out-of-balance force: 1.2618e-07 ** Stability check: (smallest 1 eigenvalues of Kt) mode 0: 5.54 + ** Stability check: (smallest eigenvalue of Kt) = 5.535765867207779 + === next load level === norm of the out-of-balance force: 2.2691e+03 norm of the out-of-balance force: 2.9285e+02 norm of the out-of-balance force: 2.1268e+00 norm of the out-of-balance force: 4.1357e-02 norm of the out-of-balance force: 8.0422e-04 norm of the out-of-balance force: 1.5639e-05 norm of the out-of-balance force: 3.0404e-07 ** Stability check: (smallest 1 eigenvalues of Kt) mode 0: 2.67 + ** Stability check: (smallest eigenvalue of Kt) = 2.669752012642176 + === next load level === norm of the out-of-balance force: 2.2691e+03 norm of the out-of-balance force: 3.4574e+02 norm of the out-of-balance force: 2.7763e+00 norm of the out-of-balance force: 6.1460e-02 norm of the out-of-balance force: 1.3605e-03 norm of the out-of-balance force: 3.0118e-05 norm of the out-of-balance force: 6.6658e-07 ** Stability check: (smallest 1 eigenvalues of Kt) mode 0: -0.21 + ** Stability check: (smallest eigenvalue of Kt) = -0.20573999905200394 + === next load level === System Analysis Report ======================= Nodes: --------------------- Node_195: x: [0.000 0.000] fix: ['ux', 'uy', 'rz'] u: [0.000 0.000 0.000] Node_196: x: [0.000 50.000] u: [0.008 -0.093 -0.202] Node_197: x: [80.000 0.000] fix: ['ux', 'uy', 'rz'] u: [0.000 0.000 0.000] Node_198: x: [80.000 50.000] u: [-0.008 -0.093 0.202] Elements: --------------------- Frame2D_306: nodes ( Node_195 Node_196 ) material: ElasticSection internal forces: f0=-1080.00 V0=-117.11 M0=2842.69 fl=-1080.00 Vl=-117.11 Ml=-3004.18 Pw=0.00 Mw=0.00 Frame2D_307: nodes ( Node_197 Node_198 ) material: ElasticSection internal forces: f0=-1080.00 V0=117.11 M0=-2842.69 fl=-1080.00 Vl=117.11 Ml=3004.18 Pw=0.00 Mw=0.00 Frame2D_308: nodes ( Node_196 Node_198 ) material: ElasticSection internal forces: f0=-117.11 V0=0.00 M0=11395.82 fl=-117.11 Vl=0.00 Ml=11395.82 Pw=-1080.00 Mw=-14400.00 .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 0.187 seconds) .. _sphx_glr_download_auto_examples_frames_plot_frame03.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_frame03.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_frame03.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_frame03.zip ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_