.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/frames/plot_frame04.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_frames_plot_frame04.py: ====================================================== Frame with inclined support ====================================================== modeled using * a linear 2D frame element * inclined boundary condition (using Transformation) * element loading .. list-table:: setting given parameters * - N = 8 - number of elements * - L = 10.0 ft - segment length * - MOE = 29000 ksi - modulus of elasticity * - A = 1.04828 in^2 - cross section area * - I = 5.5908 in^4 - moment of inertia * - w = 0.333 * kip / ft - applied lateral load Author: Peter Mackenzie-Helnwein .. GENERATED FROM PYTHON SOURCE LINES 28-150 .. code-block:: Python from random import betavariate import numpy as np from femedu.examples.Example import * from femedu.domain import * from femedu.solver import LinearSolver, NewtonRaphsonSolver from femedu.elements.linear import Frame2D from femedu.domain import Frame2dTransformation from femedu.materials import ElasticSection class ExampleFrame04(Example): def createMesh(self, nelem=4): """ Creates a mesh using `nelem` elements for each of the straight segments. """ if (not isinstance(nelem, int)) or nelem % 4: msg = "nelem must be an integer multiple of 4 (4,8,12,...)" raise TypeError(msg) # units inch = 1 ft = 12 * inch kip = 1 kips = kip lb = kip / 1000 psi = lb / inch ** 2 ksi = kip / inch ** 2 degrees = np.pi / 180. # problem parameters MOE = 29000 * ksi EI = 162133 * kips * inch ** 2 EA = 30400 * kips L = 10 * ft w0 = 0.333 * kip / ft beta = 30.0 * degrees # slope of the upper support # # start meshing # s = np.linspace(0.0, 1.0, nelem // 2 + 1) params = dict( E = MOE, A = EA/MOE, I = EI/MOE, ) material = ElasticSection(params) # nodes nodes = [ Node(0.0, si * L) for si in s] nodes += [ Node(si * L * np.cos(np.radians(30.)), L + si * L * np.sin(np.radians(30.))) for si in s[1:]] # elements elements = [Frame2D(nodes[i], nodes[i+1], material) for i in range(nelem)] # fixities # ... the first node nodes[0].fixDOF(['ux','uy','rz']) # ... the last node nvec = [np.cos(beta), np.sin(beta)] # vector parallel to the sliding plane of the upper support transform = Frame2dTransformation(nvec) # an in-plane rotation nodes[-1].addTransformation(transform) # defining a local frame for the last node nodes[-1].fixDOF(['uy', ]) # fixing the LOCAL y-direction # load the top half of the vertical member # and the first half of the inclined member for i in range(nelem//4, 3*nelem//4): elements[i].setDistLoad(-w0) return (nodes, elements) def problem(self): # initialize a system model N = 4 # number of elements # ========== setting global parameters ============== target_load_level = 1. # ========= build your structural model ============= model = System() model.setSolver(NewtonRaphsonSolver()) # model.setSolver(LinearSolver()) nodes, elements = self.createMesh(N) model.addNode(*nodes) model.addElement(*elements) # show model information print(model) print("\n==== perform the analysis ===\n") # solve model.setLoadFactor(target_load_level) model.solve(verbose=True, max_steps=10) # # ==== create some nice plots === # model.report() model.plot(factor=10.0, filename="frame4_deformed.png", show_bc=1) model.beamValuePlot("F", filename="frame4_force.png") model.beamValuePlot("V", filename="frame4_shear.png") model.beamValuePlot("M", filename="frame4_moment.png") .. GENERATED FROM PYTHON SOURCE LINES 169-171 Run the example by creating an instance of the problem and executing it by calling :py:meth:`Example.run()` .. GENERATED FROM PYTHON SOURCE LINES 171-177 .. code-block:: Python if __name__ == "__main__": ex = ExampleFrame04() ex.run() .. rst-class:: sphx-glr-horizontal * .. image-sg:: /auto_examples/frames/images/sphx_glr_plot_frame04_001.png :alt: Deformed System (magnification=10.00) :srcset: /auto_examples/frames/images/sphx_glr_plot_frame04_001.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/frames/images/sphx_glr_plot_frame04_002.png :alt: Axial Forces :srcset: /auto_examples/frames/images/sphx_glr_plot_frame04_002.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/frames/images/sphx_glr_plot_frame04_003.png :alt: Shear Forces :srcset: /auto_examples/frames/images/sphx_glr_plot_frame04_003.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/frames/images/sphx_glr_plot_frame04_004.png :alt: Bending Moment :srcset: /auto_examples/frames/images/sphx_glr_plot_frame04_004.png :class: sphx-glr-multi-img .. rst-class:: sphx-glr-script-out .. code-block:: none System object Node_199(x=[0 0], u=None) Node_200(x=[0 60], u=None) Node_201(x=[0 120], u=None) Node_202(x=[51.9615 150], u=None) Node_203(x=[103.923 180], u=None) Frame2D(Node_199, Node_200, ElasticSection(Material)({'E': 29000.0, 'A': 1.0482758620689656, 'I': 5.590793103448276, 'nu': 0.0, 'fy': 1e+30})) Frame2D(Node_200, Node_201, ElasticSection(Material)({'E': 29000.0, 'A': 1.0482758620689656, 'I': 5.590793103448276, 'nu': 0.0, 'fy': 1e+30})) Frame2D(Node_201, Node_202, ElasticSection(Material)({'E': 29000.0, 'A': 1.0482758620689656, 'I': 5.590793103448276, 'nu': 0.0, 'fy': 1e+30})) Frame2D(Node_202, Node_203, ElasticSection(Material)({'E': 29000.0, 'A': 1.0482758620689656, 'I': 5.590793103448276, 'nu': 0.0, 'fy': 1e+30})) ==== perform the analysis === norm of the out-of-balance force: 1.1920e+01 norm of the out-of-balance force: 3.5089e-13 + System Analysis Report ======================= Nodes: --------------------- Node_199: x: [0.000 0.000] fix: ['ux', 'uy', 'rz'] u: [0.000 0.000 0.000] Node_200: x: [0.000 60.000] u: [1.001 -0.001 -0.026] Node_201: x: [0.000 120.000] u: [2.294 -0.002 -0.013] Node_202: x: [51.962 150.000] u: [2.296 -0.007 0.012] Node_203: x: [103.923 180.000] local: x=[0.866 0.500], y=[-0.500 0.866] fix: ['uy'] u: [1.719 0.993 0.023] Elements: --------------------- Frame2D_309: nodes ( Node_199 Node_200 ) material: ElasticSection internal forces: f0=-0.63 V0=2.03 M0=-130.69 fl=-0.63 Vl=2.03 Ml=-9.01 Pw=0.00 Mw=0.00 Frame2D_310: nodes ( Node_200 Node_201 ) material: ElasticSection internal forces: f0=-0.63 V0=1.20 M0=-0.69 fl=-0.63 Vl=1.20 Ml=71.05 Pw=-0.83 Mw=-8.33 Frame2D_311: nodes ( Node_201 Node_202 ) material: ElasticSection internal forces: f0=0.00 V0=-0.11 M0=71.05 fl=0.00 Vl=-0.11 Ml=64.66 Pw=-0.83 Mw=-8.33 Frame2D_312: nodes ( Node_202 Node_203 ) material: ElasticSection internal forces: f0=0.00 V0=-0.94 M0=56.34 fl=0.00 Vl=-0.94 Ml=0.00 Pw=0.00 Mw=0.00 .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 0.090 seconds) .. _sphx_glr_download_auto_examples_frames_plot_frame04.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_frame04.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_frame04.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_frame04.zip ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_