.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/mixed/plot_mixed01.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_mixed_plot_mixed01.py: ====================================================== Braced building frame ====================================================== modeled using a 2D frame element for the main structure and a truss element for the brace Author: Peter Mackenzie-Helnwein .. GENERATED FROM PYTHON SOURCE LINES 11-134 .. code-block:: Python import matplotlib.pyplot as plt from femedu.examples.Example import * from femedu.domain import * from femedu.solver.NewtonRaphsonSolver import * from femedu.elements.finite.Truss import * from femedu.elements.finite.Frame2D import * from femedu.materials.FiberMaterial import * from femedu.materials.ElasticSection import * class ExampleMixed01(Example): def problem(self): # initialize a system model B = 80. H = 50. E = 29000.0 # steel MOE A = 20.0 # frame area I = 10.0 # frame moment of inertia Ab = 1.0 # brace area w = 0.50 # uniform load on floor beam Ph = 20.00 # additional horizontal load per floor # ========== setting global parameters ============== target_load_level = 10 max_steps = 10 load_levels = np.linspace(0, target_load_level, max_steps) # ========= build your structural model ============= model = System() model.setSolver(NewtonRaphsonSolver()) X10 = Node(0.0, 0.0) X11 = Node(0.0, H) X20 = Node(B, 0.0) X21 = Node(B, H) model.addNode(X10,X11) model.addNode(X20,X21) # columns frameParams = {'E': E, 'A': A, 'I': I} C11 = Frame2D(X10, X11, ElasticSection(frameParams)) C21 = Frame2D(X20, X21, ElasticSection(frameParams)) model.addElement(C11,C21) # floors params = {'E': E, 'A': A, 'I': 8*I} F11 = Frame2D(X11, X21, ElasticSection(params)) model.addElement(F11) # braces braceParams = {'E': E, 'A': Ab} model += Truss(X10, X21, FiberMaterial(braceParams)) # fixities X10.fixDOF('ux','uy','rz') # fixed X20.fixDOF('ux','uy','rz') # fixed # reference load #Pcr = np.pi**2 * EI / L**2 model.resetLoad() # size load vector and initialize #model.addLoad(Xn, -Pcr, dof=0) # add a horizontal force (first dof only) ; remember C-style indexing: 0,1,...,(n-1) # floor loading as distributed loads ... F11.setDistLoad(-w) # wind load ... X11.addLoad([Ph],['ux']) # horizontal load # show model information model.report() print("\n==== perform the analysis ===\n") # * apply the load in multiple smaller load steps # set up data recorder model.initRecorder() # initialize the analysis: model.resetDisplacements() # set U to all zeros model.setLoadFactor(0.0) # define a known equilibrium solution model.plot(factor=0.0, title="undeformed system", filename="mixed01_undeformed.png") model.startRecorder() # solve for all load_levels for loadfactor in load_levels: # define node X2 as the controled node; downward direction is prescribed: model.setLoadFactor(loadfactor) model.solve(verbose=True) model.recordThisStep() print("\n=== next load level ===\n") # # ==== create some nice plots === # model.report() model.plot(factor=10.0, filename="mixed01_deformed.png") model.beamValuePlot("F", filename="mixed01_force.png") model.beamValuePlot("V", filename="mixed01_shear.png") model.beamValuePlot("M", filename="mixed01_moment.png") .. GENERATED FROM PYTHON SOURCE LINES 152-154 Run the example by creating an instance of the problem and executing it by calling :py:meth:`Example.run()` .. GENERATED FROM PYTHON SOURCE LINES 154-161 .. code-block:: Python if __name__ == "__main__": ex = ExampleMixed01() ex.run() .. rst-class:: sphx-glr-horizontal * .. image-sg:: /auto_examples/mixed/images/sphx_glr_plot_mixed01_001.png :alt: undeformed system :srcset: /auto_examples/mixed/images/sphx_glr_plot_mixed01_001.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/mixed/images/sphx_glr_plot_mixed01_002.png :alt: Deformed System (magnification=10.00) :srcset: /auto_examples/mixed/images/sphx_glr_plot_mixed01_002.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/mixed/images/sphx_glr_plot_mixed01_003.png :alt: Axial Forces :srcset: /auto_examples/mixed/images/sphx_glr_plot_mixed01_003.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/mixed/images/sphx_glr_plot_mixed01_004.png :alt: Shear Forces :srcset: /auto_examples/mixed/images/sphx_glr_plot_mixed01_004.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/mixed/images/sphx_glr_plot_mixed01_005.png :alt: Bending Moment :srcset: /auto_examples/mixed/images/sphx_glr_plot_mixed01_005.png :class: sphx-glr-multi-img .. rst-class:: sphx-glr-script-out .. code-block:: none System Analysis Report ======================= Nodes: --------------------- Node_4710: x: [0.000 0.000] fix: ['ux', 'uy', 'rz'] u: None Node_4711: x: [0.000 50.000] P: [20.000 0.000 0.000] u: None Node_4712: x: [80.000 0.000] fix: ['ux', 'uy', 'rz'] u: None Node_4713: x: [80.000 50.000] u: None Elements: --------------------- Frame2D_7039: nodes ( Node_4710 Node_4711 ) material: ElasticSection internal forces: f0=0.00 V0=0.00 M0=0.00 fl=0.00 Vl=0.00 Ml=0.00 Pw=0.00 Mw=0.00 Frame2D_7040: nodes ( Node_4712 Node_4713 ) material: ElasticSection internal forces: f0=0.00 V0=0.00 M0=0.00 fl=0.00 Vl=0.00 Ml=0.00 Pw=0.00 Mw=0.00 Frame2D_7041: nodes ( Node_4711 Node_4713 ) material: ElasticSection internal forces: f0=0.00 V0=0.00 M0=0.00 fl=0.00 Vl=0.00 Ml=0.00 Pw=0.00 Mw=0.00 Truss: Node_4710 to Node_4713: material properties: FiberMaterial(Material)({'E': 29000.0, 'A': 1.0, 'nu': 0.0, 'fy': 1e+30}) strain:0.0 stress:{'xx': 0.0, 'yy': 0.0, 'zz': 0.0, 'xy': 0.0} internal force: 0.0 ==== perform the analysis === /Users/pmackenz/Development/Educational/FEM.edu/venv/lib/python3.13/site-packages/matplotlib/quiver.py:678: RuntimeWarning: Mean of empty slice. amean = a.mean() /Users/pmackenz/Development/Educational/FEM.edu/venv/lib/python3.13/site-packages/numpy/_core/_methods.py:145: RuntimeWarning: invalid value encountered in scalar divide ret = ret.dtype.type(ret / rcount) norm of the out-of-balance force: 0.0000e+00 + === next load level === norm of the out-of-balance force: 4.2079e+02 norm of the out-of-balance force: 2.6164e+00 norm of the out-of-balance force: 3.8196e-03 norm of the out-of-balance force: 2.1116e-06 norm of the out-of-balance force: 2.4083e-09 + === next load level === norm of the out-of-balance force: 4.2079e+02 norm of the out-of-balance force: 5.2938e+00 norm of the out-of-balance force: 1.6230e-02 norm of the out-of-balance force: 1.8540e-05 norm of the out-of-balance force: 4.5231e-08 + === next load level === norm of the out-of-balance force: 4.2079e+02 norm of the out-of-balance force: 8.0343e+00 norm of the out-of-balance force: 3.7783e-02 norm of the out-of-balance force: 6.6350e-05 norm of the out-of-balance force: 2.4890e-07 + === next load level === norm of the out-of-balance force: 4.2079e+02 norm of the out-of-balance force: 1.0840e+01 norm of the out-of-balance force: 6.9061e-02 norm of the out-of-balance force: 1.6541e-04 norm of the out-of-balance force: 8.4114e-07 + === next load level === norm of the out-of-balance force: 4.2079e+02 norm of the out-of-balance force: 1.3714e+01 norm of the out-of-balance force: 1.1068e-01 norm of the out-of-balance force: 3.3876e-04 norm of the out-of-balance force: 2.1826e-06 norm of the out-of-balance force: 1.0893e-08 + === next load level === norm of the out-of-balance force: 4.2079e+02 norm of the out-of-balance force: 1.6658e+01 norm of the out-of-balance force: 1.6331e-01 norm of the out-of-balance force: 6.1296e-04 norm of the out-of-balance force: 4.7969e-06 norm of the out-of-balance force: 2.9011e-08 + === next load level === norm of the out-of-balance force: 4.2079e+02 norm of the out-of-balance force: 1.9675e+01 norm of the out-of-balance force: 2.2764e-01 norm of the out-of-balance force: 1.0186e-03 norm of the out-of-balance force: 9.4058e-06 norm of the out-of-balance force: 6.7100e-08 + === next load level === norm of the out-of-balance force: 4.2079e+02 norm of the out-of-balance force: 2.2768e+01 norm of the out-of-balance force: 3.0444e-01 norm of the out-of-balance force: 1.5908e-03 norm of the out-of-balance force: 1.6971e-05 norm of the out-of-balance force: 1.3989e-07 + === next load level === norm of the out-of-balance force: 4.2079e+02 norm of the out-of-balance force: 2.5940e+01 norm of the out-of-balance force: 3.9449e-01 norm of the out-of-balance force: 2.3697e-03 norm of the out-of-balance force: 2.8743e-05 norm of the out-of-balance force: 2.6942e-07 + === next load level === System Analysis Report ======================= Nodes: --------------------- Node_4710: x: [0.000 0.000] fix: ['ux', 'uy', 'rz'] u: [0.000 0.000 0.000] Node_4711: x: [0.000 50.000] P: [20.000 0.000 0.000] u: [0.811 -0.016 -0.038] Node_4712: x: [80.000 0.000] fix: ['ux', 'uy', 'rz'] u: [0.000 0.000 0.000] Node_4713: x: [80.000 50.000] u: [0.783 -0.027 0.032] Elements: --------------------- Frame2D_7039: nodes ( Node_4710 Node_4711 ) material: ElasticSection internal forces: f0=-188.51 V0=-6.64 M0=-98.88 fl=-188.51 Vl=-6.64 Ml=-278.06 Pw=0.00 Mw=0.00 Frame2D_7040: nodes ( Node_4712 Node_4713 ) material: ElasticSection internal forces: f0=-316.33 V0=37.17 M0=-911.14 fl=-316.33 Vl=37.17 Ml=1195.25 Pw=0.00 Mw=0.00 Frame2D_7041: nodes ( Node_4711 Node_4713 ) material: ElasticSection internal forces: f0=-206.64 V0=-11.49 M0=2388.61 fl=-206.64 Vl=-11.49 Ml=1471.42 Pw=-200.00 Mw=-2666.67 Truss: Node_4710 to Node_4713: material properties: FiberMaterial(Material)({'E': 29000.0, 'A': 1.0, 'nu': 0.0, 'fy': 1e+30}) strain:0.006871468961325107 stress:{'xx': np.float64(199.27259987842808), 'yy': 0.0, 'zz': 0.0, 'xy': 0.0} internal force: 199.27259987842808 .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 0.181 seconds) .. _sphx_glr_download_auto_examples_mixed_plot_mixed01.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_mixed01.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_mixed01.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_mixed01.zip ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_