.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/plates/plot_plate06_element_modes.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_plates_plot_plate06_element_modes.py: =============================================================== Element Testing: Analyzing Modes and Energy =============================================================== Basic implementation test with applied loads. Testing the tangent stiffness computation. .. code:: free free ^ ^ | | 3-----2 -> free | | > | a | > (w = 1.0) | | > 0-----1 -> free width: 10. height: 10. Material parameters: St. Venant-Kirchhoff, plane stress E = 10.0 nu = 0.30 t = 1.0 Author: Peter Mackenzie-Helnwein .. GENERATED FROM PYTHON SOURCE LINES 30-86 .. code-block:: Python # sphinx_gallery_thumbnail_number = 5 import numpy as np from femedu.examples import Example from femedu.domain import System, Node from femedu.solver import NewtonRaphsonSolver from femedu.elements.linear import Quad from femedu.elements.linear import Quad9 from femedu.materials import PlaneStress # ------------------------------------------------------------- # Example setup # ------------------------------------------------------------- params = dict( E = 10., # Young's modulus nu = 0.3, # Poisson's ratio t = 1.0, # thickness of the plate fy = 1.e30 # yield stress ) a = 10. # length of the plate in the x-direction b = 12. # length of the plate in the y-direction model = System() model.setSolver(NewtonRaphsonSolver()) nd0 = Node( 0.0, 0.0) nd1 = Node( a, 0.0) nd2 = Node( a, b) nd3 = Node( 0.0, b) nd4 = Node( a/2, 0.0 ) nd5 = Node( a, b/2 ) nd6 = Node( a/2, b ) nd7 = Node( 0., b/2 ) nd8 = Node( a/2, b/2 ) model.addNode(nd0, nd1, nd2, nd3) # corner nodes model.addNode(nd4, nd5, nd6, nd7) # midside nodes model.addNode( nd8 ) # center node elemA = Quad(nd0, nd1, nd2, nd3, PlaneStress(params)) elemB = Quad9(nd0, nd1, nd2, nd3, nd4, nd5, nd6, nd7, nd8, PlaneStress(params)) # model.addElement(elemA) model.addElement(elemB) elemA.setSurfaceLoad(face=1, pn=1.0) model.plot(factor=0.0, title="Undeformed system", show_bc=1) .. image-sg:: /auto_examples/plates/images/sphx_glr_plot_plate06_element_modes_001.png :alt: Undeformed system :srcset: /auto_examples/plates/images/sphx_glr_plot_plate06_element_modes_001.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 87-91 We can have a quick look at the stiffness mode shapes using the buckling-mode plotter. These are simply eigenvalues and eigenvectors of Kt at the current load level (0.0) .. GENERATED FROM PYTHON SOURCE LINES 91-99 .. code-block:: Python model.setLoadFactor(0.0) model.solve() # np.save('../../../Kplate.npy', model.solver.Kt) for k in range(18): model.plotBucklingMode(mode=k, factor=1.0) .. rst-class:: sphx-glr-horizontal * .. image-sg:: /auto_examples/plates/images/sphx_glr_plot_plate06_element_modes_002.png :alt: Mode Shape for $ \lambda = 0.00 $ :srcset: /auto_examples/plates/images/sphx_glr_plot_plate06_element_modes_002.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/plates/images/sphx_glr_plot_plate06_element_modes_003.png :alt: Mode Shape for $ \lambda = 0.00 $ :srcset: /auto_examples/plates/images/sphx_glr_plot_plate06_element_modes_003.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/plates/images/sphx_glr_plot_plate06_element_modes_004.png :alt: Mode Shape for $ \lambda = 0.00 $ :srcset: /auto_examples/plates/images/sphx_glr_plot_plate06_element_modes_004.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/plates/images/sphx_glr_plot_plate06_element_modes_005.png :alt: Mode Shape for $ \lambda = 1.73 $ :srcset: /auto_examples/plates/images/sphx_glr_plot_plate06_element_modes_005.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/plates/images/sphx_glr_plot_plate06_element_modes_006.png :alt: Mode Shape for $ \lambda = 2.16 $ :srcset: /auto_examples/plates/images/sphx_glr_plot_plate06_element_modes_006.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/plates/images/sphx_glr_plot_plate06_element_modes_007.png :alt: Mode Shape for $ \lambda = 3.31 $ :srcset: /auto_examples/plates/images/sphx_glr_plot_plate06_element_modes_007.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/plates/images/sphx_glr_plot_plate06_element_modes_008.png :alt: Mode Shape for $ \lambda = 4.40 $ :srcset: /auto_examples/plates/images/sphx_glr_plot_plate06_element_modes_008.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/plates/images/sphx_glr_plot_plate06_element_modes_009.png :alt: Mode Shape for $ \lambda = 5.57 $ :srcset: /auto_examples/plates/images/sphx_glr_plot_plate06_element_modes_009.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/plates/images/sphx_glr_plot_plate06_element_modes_010.png :alt: Mode Shape for $ \lambda = 6.61 $ :srcset: /auto_examples/plates/images/sphx_glr_plot_plate06_element_modes_010.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/plates/images/sphx_glr_plot_plate06_element_modes_011.png :alt: Mode Shape for $ \lambda = 6.98 $ :srcset: /auto_examples/plates/images/sphx_glr_plot_plate06_element_modes_011.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/plates/images/sphx_glr_plot_plate06_element_modes_012.png :alt: Mode Shape for $ \lambda = 9.30 $ :srcset: /auto_examples/plates/images/sphx_glr_plot_plate06_element_modes_012.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/plates/images/sphx_glr_plot_plate06_element_modes_013.png :alt: Mode Shape for $ \lambda = 11.28 $ :srcset: /auto_examples/plates/images/sphx_glr_plot_plate06_element_modes_013.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/plates/images/sphx_glr_plot_plate06_element_modes_014.png :alt: Mode Shape for $ \lambda = 15.34 $ :srcset: /auto_examples/plates/images/sphx_glr_plot_plate06_element_modes_014.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/plates/images/sphx_glr_plot_plate06_element_modes_015.png :alt: Mode Shape for $ \lambda = 16.52 $ :srcset: /auto_examples/plates/images/sphx_glr_plot_plate06_element_modes_015.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/plates/images/sphx_glr_plot_plate06_element_modes_016.png :alt: Mode Shape for $ \lambda = 22.13 $ :srcset: /auto_examples/plates/images/sphx_glr_plot_plate06_element_modes_016.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/plates/images/sphx_glr_plot_plate06_element_modes_017.png :alt: Mode Shape for $ \lambda = 24.02 $ :srcset: /auto_examples/plates/images/sphx_glr_plot_plate06_element_modes_017.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/plates/images/sphx_glr_plot_plate06_element_modes_018.png :alt: Mode Shape for $ \lambda = 48.80 $ :srcset: /auto_examples/plates/images/sphx_glr_plot_plate06_element_modes_018.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/plates/images/sphx_glr_plot_plate06_element_modes_019.png :alt: Mode Shape for $ \lambda = 63.17 $ :srcset: /auto_examples/plates/images/sphx_glr_plot_plate06_element_modes_019.png :class: sphx-glr-multi-img .. rst-class:: sphx-glr-script-out .. code-block:: none + .. GENERATED FROM PYTHON SOURCE LINES 100-104 Note the three rigid body modes (lam=0.0). It can be shown that all three are linear combinations of translations in x and y-directions and a rigid body rotation. .. GENERATED FROM PYTHON SOURCE LINES 106-109 Now it is time to add boundary conditions, apply loads and check the convergence behavior. .. GENERATED FROM PYTHON SOURCE LINES 109-117 .. code-block:: Python nd0.fixDOF('ux', 'uy') nd1.fixDOF('uy') nd3.fixDOF('ux') model.setLoadFactor(1.0) model.solve() .. rst-class:: sphx-glr-script-out .. code-block:: none + .. GENERATED FROM PYTHON SOURCE LINES 118-119 The output shows that we do have a quadratic rate of convergence. .. GENERATED FROM PYTHON SOURCE LINES 121-122 Let's finish off with a nice plot of the deformed system. .. GENERATED FROM PYTHON SOURCE LINES 122-126 .. code-block:: Python model.plot(factor=1.0) model.report() .. image-sg:: /auto_examples/plates/images/sphx_glr_plot_plate06_element_modes_020.png :alt: Deformed System (magnification=1.00) :srcset: /auto_examples/plates/images/sphx_glr_plot_plate06_element_modes_020.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none System Analysis Report ======================= Nodes: --------------------- Node_620: x: [0.000 0.000] fix: ['ux', 'uy'] u: [0.000 0.000] Node_621: x: [10.000 0.000] fix: ['uy'] u: [0.000 0.000] Node_622: x: [10.000 12.000] u: [0.000 0.000] Node_623: x: [0.000 12.000] fix: ['ux'] u: [0.000 0.000] Node_624: x: [5.000 0.000] u: [0.000 0.000] Node_625: x: [10.000 6.000] u: [0.000 0.000] Node_626: x: [5.000 12.000] u: [0.000 0.000] Node_627: x: [0.000 6.000] u: [0.000 0.000] Node_628: x: [5.000 6.000] u: [0.000 0.000] Elements: --------------------- Quad9_842: nodes ( Node_620 Node_621 Node_622 Node_623 Node_624 Node_625 Node_626 Node_627 Node_628 ) material: PlaneStress strain (0): xx=-1.110e-16 yy=-1.110e-16 xy=5.551e-17 zz=6.661e-17 stress (0): xx=-1.586e-15 yy=-1.586e-15 xy=2.135e-16 zz=0.000e+00 strain (1): xx=2.220e-16 yy=0.000e+00 xy=9.382e-17 zz=-6.661e-17 stress (1): xx=2.440e-15 yy=7.320e-16 xy=3.609e-16 zz=0.000e+00 strain (2): xx=2.220e-16 yy=-1.110e-16 xy=2.914e-16 zz=-3.331e-17 stress (2): xx=2.074e-15 yy=-4.880e-16 xy=1.121e-15 zz=0.000e+00 strain (3): xx=2.220e-16 yy=0.000e+00 xy=6.711e-18 zz=-6.661e-17 stress (3): xx=2.440e-15 yy=7.320e-16 xy=2.581e-17 zz=0.000e+00 strain (4): xx=0.000e+00 yy=0.000e+00 xy=6.939e-17 zz=-0.000e+00 stress (4): xx=0.000e+00 yy=0.000e+00 xy=2.669e-16 zz=0.000e+00 strain (5): xx=-2.220e-16 yy=2.220e-16 xy=-1.892e-16 zz=-0.000e+00 stress (5): xx=-1.708e-15 yy=1.708e-15 xy=-7.276e-16 zz=0.000e+00 strain (6): xx=0.000e+00 yy=8.882e-16 xy=1.943e-16 zz=-2.665e-16 stress (6): xx=2.928e-15 yy=9.760e-15 xy=7.473e-16 zz=0.000e+00 strain (7): xx=-2.220e-16 yy=-2.220e-16 xy=1.949e-16 zz=1.332e-16 stress (7): xx=-3.172e-15 yy=-3.172e-15 xy=7.495e-16 zz=0.000e+00 strain (8): xx=0.000e+00 yy=0.000e+00 xy=1.388e-17 zz=-0.000e+00 stress (8): xx=0.000e+00 yy=0.000e+00 xy=5.338e-17 zz=0.000e+00 .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 0.287 seconds) .. _sphx_glr_download_auto_examples_plates_plot_plate06_element_modes.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_plate06_element_modes.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_plate06_element_modes.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_plate06_element_modes.zip ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_