.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/plates/plot_plate09_quad_patch_test.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_plates_plot_plate09_quad_patch_test.py: ========================================================================= Patch test for quadrilateral plate elements under in-plane loading ========================================================================= The patch test is an empirical minimum test which every finite element has to pass to ensure convergence with mesh refinement. It consists of a problem for which a known homogeneous solution exists. For plates, we commonly use a rectangular plate subject to homogeneous edge loading, e.g., constant tension in the x-direction, or constant shear, etc. The mesh must contain distorted elements and at least one element not attached to any node on the boundary. Author: Peter Mackenzie-Helnwein .. GENERATED FROM PYTHON SOURCE LINES 16-160 .. code-block:: Python import numpy as np from femedu.examples import Example from femedu.domain import System, Node from femedu.solver import NewtonRaphsonSolver from femedu.elements.linear import Quad from femedu.materials import PlaneStress class ExamplePlate09(Example): def problem(self): # ========== setting mesh parameters ============== N = 8 # number of elements in the mesh Lx = 100.0 # length of plate in the x-direction Ly = 80.0 # length of plate in the y-direction # ========== setting material parameters ============== params = dict( E = 20000., # Young's modulus nu = 0.250, # Poisson's ratio t = 1.00 # thickness of the plate ) # ========== setting load parameters ============== px = 10.0 # uniform load normal to x=const py = 0.0 # uniform load normal to y=const pxy = 0.0 # uniform shear load on x=const and y=const # ========== setting analysis parameters ============== target_load_level = 1.00 # reference load max_steps = 2 # number of load steps: 2 -> [0.0, 1.0] # define a list of target load levels load_levels = np.linspace(0, target_load_level, max_steps) # # ==== Build the system model ==== # model = System() model.setSolver(NewtonRaphsonSolver()) # create nodes nodes = ( Node(0.0*Lx, 0.0*Ly), # nd 0 Node(0.2*Lx, 0.0*Ly), # nd 1 Node(0.5*Lx, 0.0*Ly), # nd 2 Node(0.7*Lx, 0.0*Ly), # nd 3 Node(1.0*Lx, 0.0*Ly), # nd 4 # Node(0.0*Lx, 0.2*Ly), # nd 5 Node(0.15*Lx,0.3*Ly), # nd 6 Node(0.5*Lx, 0.2*Ly), # nd 7 Node(0.8*Lx, 0.3*Ly), # nd 8 Node(1.0*Lx, 0.2*Ly), # nd 9 # Node(0.0*Lx, 0.6*Ly), # nd 10 Node(0.2*Lx, 0.5*Ly), # nd 11 Node(0.7*Lx, 0.7*Ly), # nd 12 Node(0.9*Lx, 0.6*Ly), # nd 13 Node(1.0*Lx, 0.7*Ly), # nd 14 # Node(0.0*Lx, 1.0*Ly), # nd 15 Node(0.3*Lx, 1.0*Ly), # nd 16 Node(0.55*Lx,1.0*Ly), # nd 17 Node(0.8*Lx, 1.0*Ly), # nd 18 Node(1.0*Lx, 1.0*Ly), # nd 19 ) elements = ( Quad(nodes[0],nodes[1],nodes[6],nodes[5],PlaneStress(params)), # elem 0 Quad(nodes[1],nodes[2],nodes[7],nodes[6],PlaneStress(params)), # elem 1 Quad(nodes[2],nodes[3],nodes[8],nodes[7],PlaneStress(params)), # elem 2 Quad(nodes[3],nodes[4],nodes[9],nodes[8],PlaneStress(params)), # elem 3 # Quad(nodes[5],nodes[6],nodes[11],nodes[10],PlaneStress(params)), # elem 4 Quad(nodes[6],nodes[7],nodes[12],nodes[11],PlaneStress(params)), # elem 5 Quad(nodes[7],nodes[8],nodes[13],nodes[12],PlaneStress(params)), # elem 6 Quad(nodes[8],nodes[9],nodes[14],nodes[13],PlaneStress(params)), # elem 7 # Quad(nodes[10],nodes[11],nodes[16],nodes[15],PlaneStress(params)), # elem 8 Quad(nodes[11],nodes[12],nodes[17],nodes[16],PlaneStress(params)), # elem 9 Quad(nodes[12],nodes[13],nodes[18],nodes[17],PlaneStress(params)), # elem 10 Quad(nodes[13],nodes[14],nodes[19],nodes[18],PlaneStress(params)), # elem 11 # ) model.addNode(*nodes) model.addElement(*elements) # define support(s) fix_x = (0,) fix_y = (0,4) for idx in fix_x: nodes[idx].fixDOF('ux') # horizontal support left end for idx in fix_y: nodes[idx].fixDOF('uy') # vertical support right end # ==== complete the reference load ==== # surface loads on the left side elements[0].setSurfaceLoad(3,px) elements[4].setSurfaceLoad(3,px) elements[8].setSurfaceLoad(3,px) # surface loads on the right side elements[ 3].setSurfaceLoad(1,px) elements[ 7].setSurfaceLoad(1,px) elements[11].setSurfaceLoad(1,px) # these are only nodal forces as part of the reference load # .. load only the upper node model.plot(factor=0., title="undeformed system", show_bc=1) model.setLoadFactor(0.0) model.solve() # for k in range(25): # name = f"plate08_mode{k:2d}.png" # model.plotBucklingMode(mode=k,filename=name,factor=25) model.setLoadFactor(10.0) model.solve() model.solver.showKt() model.report() model.plot(factor=25.) model.valuePlot('sxx', show_mesh=1) model.valuePlot('syy', show_mesh=1) model.valuePlot('sxy', show_mesh=1) .. GENERATED FROM PYTHON SOURCE LINES 178-180 Run the example by creating an instance of the problem and executing it by calling :py:meth:`Example.run()` .. GENERATED FROM PYTHON SOURCE LINES 180-186 .. code-block:: Python if __name__ == "__main__": ex = ExamplePlate09() ex.run() .. rst-class:: sphx-glr-horizontal * .. image-sg:: /auto_examples/plates/images/sphx_glr_plot_plate09_quad_patch_test_001.png :alt: undeformed system :srcset: /auto_examples/plates/images/sphx_glr_plot_plate09_quad_patch_test_001.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/plates/images/sphx_glr_plot_plate09_quad_patch_test_002.png :alt: plot plate09 quad patch test :srcset: /auto_examples/plates/images/sphx_glr_plot_plate09_quad_patch_test_002.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/plates/images/sphx_glr_plot_plate09_quad_patch_test_003.png :alt: Deformed System (magnification=25.00) :srcset: /auto_examples/plates/images/sphx_glr_plot_plate09_quad_patch_test_003.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/plates/images/sphx_glr_plot_plate09_quad_patch_test_004.png :alt: Contours of '$\sigma_{xx}$' :srcset: /auto_examples/plates/images/sphx_glr_plot_plate09_quad_patch_test_004.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/plates/images/sphx_glr_plot_plate09_quad_patch_test_005.png :alt: Contours of '$\sigma_{yy}$' :srcset: /auto_examples/plates/images/sphx_glr_plot_plate09_quad_patch_test_005.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/plates/images/sphx_glr_plot_plate09_quad_patch_test_006.png :alt: Contours of '$\sigma_{xy}$' :srcset: /auto_examples/plates/images/sphx_glr_plot_plate09_quad_patch_test_006.png :class: sphx-glr-multi-img .. rst-class:: sphx-glr-script-out .. code-block:: none + + System Analysis Report ======================= Nodes: --------------------- Node_675: x: [0.000 0.000] fix: ['ux', 'uy'] u: [0.000 0.000] Node_676: x: [20.000 0.000] u: [0.100 -0.000] Node_677: x: [50.000 0.000] u: [0.250 -0.000] Node_678: x: [70.000 0.000] u: [0.350 -0.000] Node_679: x: [100.000 0.000] fix: ['uy'] u: [0.500 0.000] Node_680: x: [0.000 16.000] u: [-0.000 -0.020] Node_681: x: [15.000 24.000] u: [0.075 -0.030] Node_682: x: [50.000 16.000] u: [0.250 -0.020] Node_683: x: [80.000 24.000] u: [0.400 -0.030] Node_684: x: [100.000 16.000] u: [0.500 -0.020] Node_685: x: [0.000 48.000] u: [-0.000 -0.060] Node_686: x: [20.000 40.000] u: [0.100 -0.050] Node_687: x: [70.000 56.000] u: [0.350 -0.070] Node_688: x: [90.000 48.000] u: [0.450 -0.060] Node_689: x: [100.000 56.000] u: [0.500 -0.070] Node_690: x: [0.000 80.000] u: [-0.000 -0.100] Node_691: x: [30.000 80.000] u: [0.150 -0.100] Node_692: x: [55.000 80.000] u: [0.275 -0.100] Node_693: x: [80.000 80.000] u: [0.400 -0.100] Node_694: x: [100.000 80.000] u: [0.500 -0.100] Elements: --------------------- Quad_873: nodes ( Node_675 Node_676 Node_681 Node_680 ) material: list strain (0): xx=5.000e-03 yy=-1.250e-03 xy=-2.428e-16 zz=-9.375e-04 stress (0): xx=1.000e+02 yy=2.366e-12 xy=-1.942e-12 zz=0.000e+00 strain (1): xx=5.000e-03 yy=-1.250e-03 xy=-2.272e-16 zz=-9.375e-04 stress (1): xx=1.000e+02 yy=-1.183e-12 xy=-1.818e-12 zz=0.000e+00 strain (2): xx=5.000e-03 yy=-1.250e-03 xy=-2.176e-16 zz=-9.375e-04 stress (2): xx=1.000e+02 yy=3.553e-12 xy=-1.741e-12 zz=0.000e+00 strain (3): xx=5.000e-03 yy=-1.250e-03 xy=1.514e-16 zz=-9.375e-04 stress (3): xx=1.000e+02 yy=1.187e-12 xy=1.211e-12 zz=0.000e+00 Quad_874: nodes ( Node_676 Node_677 Node_682 Node_681 ) material: list strain (0): xx=5.000e-03 yy=-1.250e-03 xy=1.748e-16 zz=-9.375e-04 stress (0): xx=1.000e+02 yy=2.370e-12 xy=1.399e-12 zz=0.000e+00 strain (1): xx=5.000e-03 yy=-1.250e-03 xy=-1.490e-16 zz=-9.375e-04 stress (1): xx=1.000e+02 yy=3.553e-12 xy=-1.192e-12 zz=0.000e+00 strain (2): xx=5.000e-03 yy=-1.250e-03 xy=-2.020e-16 zz=-9.375e-04 stress (2): xx=1.000e+02 yy=-4.739e-12 xy=-1.616e-12 zz=0.000e+00 strain (3): xx=5.000e-03 yy=-1.250e-03 xy=-4.152e-16 zz=-9.375e-04 stress (3): xx=1.000e+02 yy=0.000e+00 xy=-3.321e-12 zz=0.000e+00 Quad_875: nodes ( Node_677 Node_678 Node_683 Node_682 ) material: list strain (0): xx=5.000e-03 yy=-1.250e-03 xy=-4.098e-16 zz=-9.375e-04 stress (0): xx=1.000e+02 yy=-1.183e-12 xy=-3.278e-12 zz=0.000e+00 strain (1): xx=5.000e-03 yy=-1.250e-03 xy=-2.583e-16 zz=-9.375e-04 stress (1): xx=1.000e+02 yy=3.553e-12 xy=-2.067e-12 zz=0.000e+00 strain (2): xx=5.000e-03 yy=-1.250e-03 xy=-4.831e-17 zz=-9.375e-04 stress (2): xx=1.000e+02 yy=0.000e+00 xy=-3.865e-13 zz=0.000e+00 strain (3): xx=5.000e-03 yy=-1.250e-03 xy=-7.157e-16 zz=-9.375e-04 stress (3): xx=1.000e+02 yy=2.366e-12 xy=-5.726e-12 zz=0.000e+00 Quad_876: nodes ( Node_678 Node_679 Node_684 Node_683 ) material: list strain (0): xx=5.000e-03 yy=-1.250e-03 xy=-3.055e-16 zz=-9.375e-04 stress (0): xx=1.000e+02 yy=0.000e+00 xy=-2.444e-12 zz=0.000e+00 strain (1): xx=5.000e-03 yy=-1.250e-03 xy=-1.864e-16 zz=-9.375e-04 stress (1): xx=1.000e+02 yy=1.187e-12 xy=-1.492e-12 zz=0.000e+00 strain (2): xx=5.000e-03 yy=-1.250e-03 xy=-6.040e-16 zz=-9.375e-04 stress (2): xx=1.000e+02 yy=-2.370e-12 xy=-4.832e-12 zz=0.000e+00 strain (3): xx=5.000e-03 yy=-1.250e-03 xy=1.562e-16 zz=-9.375e-04 stress (3): xx=1.000e+02 yy=7.105e-12 xy=1.250e-12 zz=0.000e+00 Quad_877: nodes ( Node_680 Node_681 Node_686 Node_685 ) material: list strain (0): xx=5.000e-03 yy=-1.250e-03 xy=-2.174e-17 zz=-9.375e-04 stress (0): xx=1.000e+02 yy=-2.370e-12 xy=-1.739e-13 zz=0.000e+00 strain (1): xx=5.000e-03 yy=-1.250e-03 xy=1.507e-16 zz=-9.375e-04 stress (1): xx=1.000e+02 yy=3.553e-12 xy=1.205e-12 zz=0.000e+00 strain (2): xx=5.000e-03 yy=-1.250e-03 xy=-1.436e-16 zz=-9.375e-04 stress (2): xx=1.000e+02 yy=-1.183e-12 xy=-1.149e-12 zz=0.000e+00 strain (3): xx=5.000e-03 yy=-1.250e-03 xy=-4.615e-17 zz=-9.375e-04 stress (3): xx=1.000e+02 yy=-1.183e-12 xy=-3.692e-13 zz=0.000e+00 Quad_878: nodes ( Node_681 Node_682 Node_687 Node_686 ) material: list strain (0): xx=5.000e-03 yy=-1.250e-03 xy=1.752e-16 zz=-9.375e-04 stress (0): xx=1.000e+02 yy=2.366e-12 xy=1.402e-12 zz=0.000e+00 strain (1): xx=5.000e-03 yy=-1.250e-03 xy=-1.708e-16 zz=-9.375e-04 stress (1): xx=1.000e+02 yy=-4.739e-12 xy=-1.366e-12 zz=0.000e+00 strain (2): xx=5.000e-03 yy=-1.250e-03 xy=5.468e-17 zz=-9.375e-04 stress (2): xx=1.000e+02 yy=-8.288e-12 xy=4.374e-13 zz=0.000e+00 strain (3): xx=5.000e-03 yy=-1.250e-03 xy=-6.084e-17 zz=-9.375e-04 stress (3): xx=1.000e+02 yy=-1.183e-12 xy=-4.867e-13 zz=0.000e+00 Quad_879: nodes ( Node_682 Node_683 Node_688 Node_687 ) material: list strain (0): xx=5.000e-03 yy=-1.250e-03 xy=1.674e-16 zz=-9.375e-04 stress (0): xx=1.000e+02 yy=-2.370e-12 xy=1.339e-12 zz=0.000e+00 strain (1): xx=5.000e-03 yy=-1.250e-03 xy=5.848e-16 zz=-9.375e-04 stress (1): xx=1.000e+02 yy=1.187e-12 xy=4.678e-12 zz=0.000e+00 strain (2): xx=5.000e-03 yy=-1.250e-03 xy=3.364e-16 zz=-9.375e-04 stress (2): xx=1.000e+02 yy=-2.366e-12 xy=2.691e-12 zz=0.000e+00 strain (3): xx=5.000e-03 yy=-1.250e-03 xy=8.505e-16 zz=-9.375e-04 stress (3): xx=1.000e+02 yy=0.000e+00 xy=6.804e-12 zz=0.000e+00 Quad_880: nodes ( Node_683 Node_684 Node_689 Node_688 ) material: list strain (0): xx=5.000e-03 yy=-1.250e-03 xy=-3.858e-16 zz=-9.375e-04 stress (0): xx=1.000e+02 yy=5.919e-12 xy=-3.086e-12 zz=0.000e+00 strain (1): xx=5.000e-03 yy=-1.250e-03 xy=-2.609e-16 zz=-9.375e-04 stress (1): xx=1.000e+02 yy=-1.187e-12 xy=-2.087e-12 zz=0.000e+00 strain (2): xx=5.000e-03 yy=-1.250e-03 xy=-1.943e-16 zz=-9.375e-04 stress (2): xx=1.000e+02 yy=1.183e-12 xy=-1.554e-12 zz=0.000e+00 strain (3): xx=5.000e-03 yy=-1.250e-03 xy=-3.523e-17 zz=-9.375e-04 stress (3): xx=1.000e+02 yy=2.370e-12 xy=-2.819e-13 zz=0.000e+00 Quad_881: nodes ( Node_685 Node_686 Node_691 Node_690 ) material: list strain (0): xx=5.000e-03 yy=-1.250e-03 xy=2.093e-16 zz=-9.375e-04 stress (0): xx=1.000e+02 yy=3.553e-12 xy=1.675e-12 zz=0.000e+00 strain (1): xx=5.000e-03 yy=-1.250e-03 xy=1.524e-16 zz=-9.375e-04 stress (1): xx=1.000e+02 yy=4.736e-12 xy=1.219e-12 zz=0.000e+00 strain (2): xx=5.000e-03 yy=-1.250e-03 xy=4.599e-16 zz=-9.375e-04 stress (2): xx=1.000e+02 yy=-4.739e-12 xy=3.679e-12 zz=0.000e+00 strain (3): xx=5.000e-03 yy=-1.250e-03 xy=3.502e-16 zz=-9.375e-04 stress (3): xx=1.000e+02 yy=0.000e+00 xy=2.802e-12 zz=0.000e+00 Quad_882: nodes ( Node_686 Node_687 Node_692 Node_691 ) material: list strain (0): xx=5.000e-03 yy=-1.250e-03 xy=-1.144e-16 zz=-9.375e-04 stress (0): xx=1.000e+02 yy=2.366e-12 xy=-9.150e-13 zz=0.000e+00 strain (1): xx=5.000e-03 yy=-1.250e-03 xy=2.635e-16 zz=-9.375e-04 stress (1): xx=1.000e+02 yy=-2.370e-12 xy=2.108e-12 zz=0.000e+00 strain (2): xx=5.000e-03 yy=-1.250e-03 xy=-9.626e-16 zz=-9.375e-04 stress (2): xx=1.000e+02 yy=9.475e-12 xy=-7.701e-12 zz=0.000e+00 strain (3): xx=5.000e-03 yy=-1.250e-03 xy=-3.084e-16 zz=-9.375e-04 stress (3): xx=1.000e+02 yy=1.187e-12 xy=-2.467e-12 zz=0.000e+00 Quad_883: nodes ( Node_687 Node_688 Node_693 Node_692 ) material: list strain (0): xx=5.000e-03 yy=-1.250e-03 xy=1.882e-16 zz=-9.375e-04 stress (0): xx=1.000e+02 yy=4.739e-12 xy=1.506e-12 zz=0.000e+00 strain (1): xx=5.000e-03 yy=-1.250e-03 xy=-1.989e-16 zz=-9.375e-04 stress (1): xx=1.000e+02 yy=-1.066e-11 xy=-1.591e-12 zz=0.000e+00 strain (2): xx=5.000e-03 yy=-1.250e-03 xy=-4.238e-16 zz=-9.375e-04 stress (2): xx=1.000e+02 yy=0.000e+00 xy=-3.390e-12 zz=0.000e+00 strain (3): xx=5.000e-03 yy=-1.250e-03 xy=6.587e-16 zz=-9.375e-04 stress (3): xx=1.000e+02 yy=0.000e+00 xy=5.269e-12 zz=0.000e+00 Quad_884: nodes ( Node_688 Node_689 Node_694 Node_693 ) material: list strain (0): xx=5.000e-03 yy=-1.250e-03 xy=6.956e-16 zz=-9.375e-04 stress (0): xx=1.000e+02 yy=-8.288e-12 xy=5.565e-12 zz=0.000e+00 strain (1): xx=5.000e-03 yy=-1.250e-03 xy=2.904e-16 zz=-9.375e-04 stress (1): xx=1.000e+02 yy=2.370e-12 xy=2.323e-12 zz=0.000e+00 strain (2): xx=5.000e-03 yy=-1.250e-03 xy=1.619e-15 zz=-9.375e-04 stress (2): xx=1.000e+02 yy=7.105e-12 xy=1.296e-11 zz=0.000e+00 strain (3): xx=5.000e-03 yy=-1.250e-03 xy=7.029e-16 zz=-9.375e-04 stress (3): xx=1.000e+02 yy=1.183e-12 xy=5.623e-12 zz=0.000e+00 .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 0.172 seconds) .. _sphx_glr_download_auto_examples_plates_plot_plate09_quad_patch_test.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_plate09_quad_patch_test.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_plate09_quad_patch_test.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_plate09_quad_patch_test.zip ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_