.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/plates/plot_plate15_cantilever_large_disp_higher_order.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_plates_plot_plate15_cantilever_large_disp_higher_order.py: ========================================================== Bending a cantilever beam using Quad9 elements ========================================================== Using PatchMesher to model the beam .. dropdown:: Background Theory This problem can be approximately validated using Bernoulli-Euler theory for small deformations. The given problem shall be modeled using .. list-table:: :widths: 20 30 50 :header-rows: 1 * - parameter - value - description * - :math:`E` - 20000. - modulus of elasticity (in ksi) * - :math:`I` - 666.667 - area moment of inertia (in :math:`inches^4`) * - :math:`L` - 120. - length of the cantilever (in inches) * - :math:`P` - 30. - force at :math:`x=L` (in kips) The general solution then yields .. math:: v(x) = -\frac{P L^3}{6 EI}\left( \frac{x}{L} \right)^2\left( 3 - \frac{x}{L} \right) .. math:: \theta(x) = \frac{d}{dx} v(x) = -\frac{P L^2}{2 EI}\left( \frac{x}{L} \right)\left( 2 - \frac{x}{L} \right) .. math:: M(x) = EI \frac{d}{dx} \theta(x) = -\frac{P L}{6} \left( 1 - \frac{x}{L} \right) .. math:: V(x) = \frac{d}{dx} M(x) = P The horizontal movement follows as (:math:`2^{nd}` order accurate) .. math:: u(x) = \int\limits_{0}^{x} -\frac{1}{2} \theta^2(s) \: ds = -\frac{P^2 L^5}{120 (EI)^2}\left( \frac{x}{L} \right)^3\left( 20 - 15\:\frac{x}{L}+3 \left( \frac{x}{L} \right)^2 \right) .. list-table:: Reference values for a load factor of :math:`\lambda=1.0` :widths: 20 30 50 :header-rows: 1 * - variable - value - description * - :math:`u(L)` - -0.0083981 - end displacement (in inches). :math:`u>0` means moving to the right. * - :math:`v(L)` - -1.296 - end displacement (in inches). :math:`v>0` means moving up. .. list-table:: Reference values for a load factor of :math:`\lambda=10.0` :widths: 20 30 50 :header-rows: 1 * - variable - value - description * - :math:`u(L)` - -0.83981 - end displacement (in inches). :math:`u>0` means moving to the right. * - :math:`v(L)` - -12.96 - end displacement (in inches). :math:`v>0` means moving up. .. GENERATED FROM PYTHON SOURCE LINES 86-193 .. code-block:: Python import numpy as np from femedu.examples import Example from femedu.domain import System from femedu.solver import NewtonRaphsonSolver from femedu.elements.linear import Quad9 #from femedu.elements.finite import Quad9 from femedu.materials import PlaneStress from femedu.mesher import * class ExamplePlate15(Example): def problem(self): # ========== setting mesh parameters ============== Nx = 4 # number of elements in the mesh Ny = 4 # number of elements in the mesh Lx = 120.0 # length of plate in the x-direction Ly = 20.0 # length of plate in the y-direction # ========== setting material parameters ============== params = dict( E=20000., # Young's modulus nu=0.250, # Poisson's ratio t=1.00 # thickness of the plate ) # ========== setting load parameters ============== px = 0.0 # uniform load normal to x=Lx py = 0.0 # uniform load normal to y=Ly pxy = 1.5 # uniform shear load on x=L # ========== setting analysis parameters ============== target_load_level = 10.00 # reference load max_steps = 10 # number of load steps: 2 -> [0.0, 1.0] # define a list of target load levels load_levels = np.linspace(0, target_load_level, max_steps+1) # # ==== Build the system model ==== # model = System() model.setSolver(NewtonRaphsonSolver()) # create nodes mesher = PatchMesher(model, (0., 0.), (Lx, 0.), (Lx, Ly), (0., Ly)) nodes, elements = mesher.quadMesh(Nx, Ny, Quad9, PlaneStress(params)) # define support(s) ## find nodes at x==0 for node, _ in model.findNodesAlongLine((0.0, 0.0), (0.0, 1.0)): node.fixDOF('ux', 'uy') # ==== complete the reference load ==== # the section at the right end for _, face in model.findFacesAlongLine((Lx, 0.0), (0.0, 1.0), orientation=+1): face.setLoad(px, -pxy) # durface loading on the top face for _, face in model.findFacesAlongLine((0.0, Ly), (1.0, 0.0), orientation=-1): face.setLoad(-py, 0.0) # find the node on the beam axis (y==Ly/2) at the end of the beam (x==Lx) end_node, _ = model.findNodesAt((Lx, Ly / 2))[0] # set up a recorder model.initRecorder(variables=['ux', 'uy'], nodes=[end_node]) model.startRecorder() model.plot(factor=0, title="undeformed system", filename="plate11_undeformed.png", show_bc=1, show_loads=1) for lf in load_levels: model.setLoadFactor(lf) for node, _ in model.findNodesAlongLine((Lx, 0.), (0., 1.)): print(node) for _, face in model.findFacesAlongLine((Lx, 0.), (0., 1.)): print(face) model.solve(verbose=True) # model.report() model.plot(factor=1., filename=f"plate11_deformed_lf{lf:.2f}.png", show_bc=1, show_loads=1, show_reactions=1) model.valuePlot('sxx', show_mesh=True) model.valuePlot('sxy', show_mesh=True) # create a history plot for the end node model.historyPlot('lam', ['ux', 'uy'], nodes=[end_node, end_node]) model.historyPlot(('ux', end_node), 'uy', node=end_node) .. GENERATED FROM PYTHON SOURCE LINES 207-209 Run the example by creating an instance of the problem and executing it by calling :py:meth:`Example.run()` .. GENERATED FROM PYTHON SOURCE LINES 209-215 .. code-block:: Python if __name__ == "__main__": ex = ExamplePlate15() ex.run() .. rst-class:: sphx-glr-horizontal * .. image-sg:: /auto_examples/plates/images/sphx_glr_plot_plate15_cantilever_large_disp_higher_order_001.png :alt: undeformed system :srcset: /auto_examples/plates/images/sphx_glr_plot_plate15_cantilever_large_disp_higher_order_001.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/plates/images/sphx_glr_plot_plate15_cantilever_large_disp_higher_order_002.png :alt: Deformed System (magnification=1.00) :srcset: /auto_examples/plates/images/sphx_glr_plot_plate15_cantilever_large_disp_higher_order_002.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/plates/images/sphx_glr_plot_plate15_cantilever_large_disp_higher_order_003.png :alt: Contours of '$\sigma_{xx}$' :srcset: /auto_examples/plates/images/sphx_glr_plot_plate15_cantilever_large_disp_higher_order_003.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/plates/images/sphx_glr_plot_plate15_cantilever_large_disp_higher_order_004.png :alt: Contours of '$\sigma_{xy}$' :srcset: /auto_examples/plates/images/sphx_glr_plot_plate15_cantilever_large_disp_higher_order_004.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/plates/images/sphx_glr_plot_plate15_cantilever_large_disp_higher_order_005.png :alt: Load History Plot :srcset: /auto_examples/plates/images/sphx_glr_plot_plate15_cantilever_large_disp_higher_order_005.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/plates/images/sphx_glr_plot_plate15_cantilever_large_disp_higher_order_006.png :alt: Load History Plot :srcset: /auto_examples/plates/images/sphx_glr_plot_plate15_cantilever_large_disp_higher_order_006.png :class: sphx-glr-multi-img .. rst-class:: sphx-glr-script-out .. code-block:: none Node_4151: x: [120.000 0.000] u: [0.000 0.000] Node_4160: x: [120.000 2.500] u: [0.000 0.000] Node_4169: x: [120.000 5.000] u: [0.000 0.000] Node_4178: x: [120.000 7.500] u: [0.000 0.000] Node_4187: x: [120.000 10.000] u: [0.000 0.000] Node_4196: x: [120.000 12.500] u: [0.000 0.000] Node_4205: x: [120.000 15.000] u: [0.000 0.000] Node_4214: x: [120.000 17.500] u: [0.000 0.000] Node_4223: x: [120.000 20.000] u: [0.000 0.000] Face2D_6738.1 Face2D_6742.1 Face2D_6746.1 Face2D_6750.1 norm of the out-of-balance force: 5.3029e-09 Recorder.addData: 'stability' not initialized by the recorder: ignored + Node_4151: x: [120.000 0.000] u: [0.000 0.000] Node_4160: x: [120.000 2.500] u: [0.000 0.000] Node_4169: x: [120.000 5.000] u: [0.000 0.000] Node_4178: x: [120.000 7.500] u: [0.000 0.000] Node_4187: x: [120.000 10.000] u: [0.000 0.000] Node_4196: x: [120.000 12.500] u: [0.000 0.000] Node_4205: x: [120.000 15.000] u: [0.000 0.000] Node_4214: x: [120.000 17.500] u: [0.000 0.000] Node_4223: x: [120.000 20.000] u: [0.000 0.000] Face2D_6738.1 Face2D_6742.1 Face2D_6746.1 Face2D_6750.1 norm of the out-of-balance force: 1.1040e+01 norm of the out-of-balance force: 5.2926e-09 Recorder.addData: 'stability' not initialized by the recorder: ignored + Node_4151: x: [120.000 0.000] u: [-0.162 -1.312] Node_4160: x: [120.000 2.500] u: [-0.121 -1.312] Node_4169: x: [120.000 5.000] u: [-0.080 -1.312] Node_4178: x: [120.000 7.500] u: [-0.040 -1.312] Node_4187: x: [120.000 10.000] u: [0.000 -1.312] Node_4196: x: [120.000 12.500] u: [0.040 -1.312] Node_4205: x: [120.000 15.000] u: [0.080 -1.312] Node_4214: x: [120.000 17.500] u: [0.121 -1.312] Node_4223: x: [120.000 20.000] u: [0.162 -1.312] Face2D_6738.1 Face2D_6742.1 Face2D_6746.1 Face2D_6750.1 norm of the out-of-balance force: 1.1040e+01 norm of the out-of-balance force: 6.0162e-09 Recorder.addData: 'stability' not initialized by the recorder: ignored + Node_4151: x: [120.000 0.000] u: [-0.324 -2.624] Node_4160: x: [120.000 2.500] u: [-0.242 -2.624] Node_4169: x: [120.000 5.000] u: [-0.161 -2.624] Node_4178: x: [120.000 7.500] u: [-0.080 -2.624] Node_4187: x: [120.000 10.000] u: [0.000 -2.624] Node_4196: x: [120.000 12.500] u: [0.080 -2.624] Node_4205: x: [120.000 15.000] u: [0.161 -2.624] Node_4214: x: [120.000 17.500] u: [0.242 -2.624] Node_4223: x: [120.000 20.000] u: [0.324 -2.624] Face2D_6738.1 Face2D_6742.1 Face2D_6746.1 Face2D_6750.1 norm of the out-of-balance force: 1.1040e+01 norm of the out-of-balance force: 6.8212e-09 Recorder.addData: 'stability' not initialized by the recorder: ignored + Node_4151: x: [120.000 0.000] u: [-0.486 -3.936] Node_4160: x: [120.000 2.500] u: [-0.363 -3.936] Node_4169: x: [120.000 5.000] u: [-0.241 -3.936] Node_4178: x: [120.000 7.500] u: [-0.121 -3.935] Node_4187: x: [120.000 10.000] u: [0.000 -3.935] Node_4196: x: [120.000 12.500] u: [0.121 -3.935] Node_4205: x: [120.000 15.000] u: [0.241 -3.936] Node_4214: x: [120.000 17.500] u: [0.363 -3.936] Node_4223: x: [120.000 20.000] u: [0.486 -3.936] Face2D_6738.1 Face2D_6742.1 Face2D_6746.1 Face2D_6750.1 norm of the out-of-balance force: 1.1040e+01 norm of the out-of-balance force: 5.8740e-09 Recorder.addData: 'stability' not initialized by the recorder: ignored + Node_4151: x: [120.000 0.000] u: [-0.648 -5.248] Node_4160: x: [120.000 2.500] u: [-0.484 -5.248] Node_4169: x: [120.000 5.000] u: [-0.322 -5.247] Node_4178: x: [120.000 7.500] u: [-0.161 -5.247] Node_4187: x: [120.000 10.000] u: [0.000 -5.247] Node_4196: x: [120.000 12.500] u: [0.161 -5.247] Node_4205: x: [120.000 15.000] u: [0.322 -5.247] Node_4214: x: [120.000 17.500] u: [0.484 -5.248] Node_4223: x: [120.000 20.000] u: [0.648 -5.248] Face2D_6738.1 Face2D_6742.1 Face2D_6746.1 Face2D_6750.1 norm of the out-of-balance force: 1.1040e+01 norm of the out-of-balance force: 5.0409e-09 Recorder.addData: 'stability' not initialized by the recorder: ignored + Node_4151: x: [120.000 0.000] u: [-0.810 -6.560] Node_4160: x: [120.000 2.500] u: [-0.605 -6.560] Node_4169: x: [120.000 5.000] u: [-0.402 -6.559] Node_4178: x: [120.000 7.500] u: [-0.201 -6.559] Node_4187: x: [120.000 10.000] u: [0.000 -6.559] Node_4196: x: [120.000 12.500] u: [0.201 -6.559] Node_4205: x: [120.000 15.000] u: [0.402 -6.559] Node_4214: x: [120.000 17.500] u: [0.605 -6.560] Node_4223: x: [120.000 20.000] u: [0.810 -6.560] Face2D_6738.1 Face2D_6742.1 Face2D_6746.1 Face2D_6750.1 norm of the out-of-balance force: 1.1040e+01 norm of the out-of-balance force: 4.7514e-09 Recorder.addData: 'stability' not initialized by the recorder: ignored + Node_4151: x: [120.000 0.000] u: [-0.972 -7.872] Node_4160: x: [120.000 2.500] u: [-0.726 -7.872] Node_4169: x: [120.000 5.000] u: [-0.483 -7.871] Node_4178: x: [120.000 7.500] u: [-0.241 -7.871] Node_4187: x: [120.000 10.000] u: [0.000 -7.871] Node_4196: x: [120.000 12.500] u: [0.241 -7.871] Node_4205: x: [120.000 15.000] u: [0.483 -7.871] Node_4214: x: [120.000 17.500] u: [0.726 -7.872] Node_4223: x: [120.000 20.000] u: [0.972 -7.872] Face2D_6738.1 Face2D_6742.1 Face2D_6746.1 Face2D_6750.1 norm of the out-of-balance force: 1.1040e+01 norm of the out-of-balance force: 6.5398e-09 Recorder.addData: 'stability' not initialized by the recorder: ignored + Node_4151: x: [120.000 0.000] u: [-1.134 -9.184] Node_4160: x: [120.000 2.500] u: [-0.847 -9.184] Node_4169: x: [120.000 5.000] u: [-0.563 -9.183] Node_4178: x: [120.000 7.500] u: [-0.281 -9.182] Node_4187: x: [120.000 10.000] u: [0.000 -9.182] Node_4196: x: [120.000 12.500] u: [0.281 -9.182] Node_4205: x: [120.000 15.000] u: [0.563 -9.183] Node_4214: x: [120.000 17.500] u: [0.847 -9.184] Node_4223: x: [120.000 20.000] u: [1.134 -9.184] Face2D_6738.1 Face2D_6742.1 Face2D_6746.1 Face2D_6750.1 norm of the out-of-balance force: 1.1040e+01 norm of the out-of-balance force: 4.9041e-09 Recorder.addData: 'stability' not initialized by the recorder: ignored + Node_4151: x: [120.000 0.000] u: [-1.295 -10.497] Node_4160: x: [120.000 2.500] u: [-0.968 -10.496] Node_4169: x: [120.000 5.000] u: [-0.644 -10.495] Node_4178: x: [120.000 7.500] u: [-0.321 -10.494] Node_4187: x: [120.000 10.000] u: [0.000 -10.494] Node_4196: x: [120.000 12.500] u: [0.321 -10.494] Node_4205: x: [120.000 15.000] u: [0.644 -10.495] Node_4214: x: [120.000 17.500] u: [0.968 -10.496] Node_4223: x: [120.000 20.000] u: [1.295 -10.497] Face2D_6738.1 Face2D_6742.1 Face2D_6746.1 Face2D_6750.1 norm of the out-of-balance force: 1.1040e+01 norm of the out-of-balance force: 4.9523e-09 Recorder.addData: 'stability' not initialized by the recorder: ignored + Node_4151: x: [120.000 0.000] u: [-1.457 -11.809] Node_4160: x: [120.000 2.500] u: [-1.089 -11.808] Node_4169: x: [120.000 5.000] u: [-0.724 -11.807] Node_4178: x: [120.000 7.500] u: [-0.362 -11.806] Node_4187: x: [120.000 10.000] u: [0.000 -11.806] Node_4196: x: [120.000 12.500] u: [0.362 -11.806] Node_4205: x: [120.000 15.000] u: [0.724 -11.807] Node_4214: x: [120.000 17.500] u: [1.089 -11.808] Node_4223: x: [120.000 20.000] u: [1.457 -11.809] Face2D_6738.1 Face2D_6742.1 Face2D_6746.1 Face2D_6750.1 norm of the out-of-balance force: 1.1040e+01 norm of the out-of-balance force: 4.5894e-09 Recorder.addData: 'stability' not initialized by the recorder: ignored + .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 1.568 seconds) .. _sphx_glr_download_auto_examples_plates_plot_plate15_cantilever_large_disp_higher_order.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_plate15_cantilever_large_disp_higher_order.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_plate15_cantilever_large_disp_higher_order.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_plate15_cantilever_large_disp_higher_order.zip ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_