.. _diffusion_triangle_class: Triangle class for Diffusion ============================== Coordinate-free formulation for a bi-linear diffusion triangle. .. dropdown:: Theory Coordinate mapping: .. math:: \mathbf{X}=\mathbf{X}_i \xi^i \quad i=1,2,3 \quad \xi^i \geqslant 0 ~\&~ \xi^1+\xi^2+\xi^3 \leq 1 Definition of covariant and dual base vectors: .. math:: d\mathbf{X}=\mathbf{G}_i d \xi^i \rightarrow d \xi^i=\mathbf{G}^i \cdot d \mathbf{X} \quad w/ ~~ \mathbf{G}^i \mathbf{G}_j=\delta_j^i The dual base for the 0-direction of the triangle coordinates: .. math:: \mathbf{G}^u = -\mathbf{G}^s - \mathbf{G}^t Leads to the following expression for the gradient of the scalar potential function: .. math:: \nabla \phi = \phi_0 \, \mathbf{G}^u + \phi_1 \, \mathbf{G}^s + \phi_2 \, \mathbf{G}^t Nodal forces .. math:: \mathbf{F}_I = A t \lambda \, \mathbf{G}^I\cdot\nabla\phi \qquad\text{with}\quad I=u,s,t Nodal tangent stiffness .. math:: \left({K}_{t}\right)^{IJ} = A t \lambda \, \mathbf{G}^I\cdot\mathbf{G}^J \qquad\text{with}\quad I,J=u,s,t .. math:: [\mathbf{K}_{t}] = \left[ \begin{array}{ccc} \left({K}_{t}\right)^{uu} & \left({K}_{t}\right)^{us} & \left({K}_{t}\right)^{ut} \\ \left({K}_{t}\right)^{su} & \left({K}_{t}\right)^{ss} & \left({K}_{t}\right)^{st} \\ \left({K}_{t}\right)^{tu} & \left({K}_{t}\right)^{ts} & \left({K}_{t}\right)^{tt} \end{array} \right] = A t \lambda \left[ \begin{array}{ccc} \mathbf{G}^u\cdot\mathbf{G}^u & \mathbf{G}^u\cdot\mathbf{G}^s & \mathbf{G}^u\cdot\mathbf{G}^t \\ \mathbf{G}^s\cdot\mathbf{G}^u & \mathbf{G}^s\cdot\mathbf{G}^s & \mathbf{G}^s\cdot\mathbf{G}^t \\ \mathbf{G}^t\cdot\mathbf{G}^u & \mathbf{G}^t\cdot\mathbf{G}^s & \mathbf{G}^t\cdot\mathbf{G}^t \end{array} \right] Parent class --------------- * :doc:`../Element_class` See also ------------ * :doc:`Triangle6_class` Class doc ------------- .. automodule:: femedu.elements.diffusion.Triangle :members: