PlateSection ========================== .. warning:: This material is not yet available The plate section model implements a complex cross section built from multiple :doc:`PlaneStress` instances .. math:: \varepsilon_{kl}(z) = \varepsilon^0_{kl} - z \,\phi_{kl} .. math:: n^{ij} = \int_{-h/2}^{h/2} \sigma^{ij}(z)\, dz \qquad \qquad m^{ij} = -\int_{-h/2}^{h/2} z\sigma^{ij}(z)\, dz Stress :math:`\sigma^{ij}(z)` is obtained from a :doc:`PlaneStress` material layer at distance *z*. Through-the-thickness integration is performed numerically as a sum over layers. The **PlateSection** material will further compute the tangent stiffness tensors defined as: .. math:: dn^{ij} =: \mathbb{D}^{ijkl} \, d\varepsilon^{0}_{kl} +\mathbb{C}^{ijkl} d\phi_{kl} .. math:: dm^{ij} =: \mathbb{C}^{ijkl} \, d\varepsilon^{0}_{kl} + \mathbb{B}^{ijkl} \, d\phi_{kl} where .. list-table:: * - :math:`\varepsilon^0_{ij}` - membrane strain (input) * - :math:`\phi_{ij}` - curvature change (input) * - :math:`n^{ij}` - component of resulting membrane force (output) * - :math:`m^{ij}` - component of resulting moment (output) * - :math:`\mathcal{C}^{ijkl}(z)` - material tangent stiffness of a plane-stress material layer at distance *z* * - :math:`\mathbb{D}^{ijkl}` - axial stiffness * - :math:`\mathbb{B}^{ijkl}` - flexural stiffness * - :math:`\mathbb{C}^{ijkl}` - coupling stiffness