Braced building frame

modeled using a 2D frame element for the main structure and a truss element for the brace

Author: Peter Mackenzie-Helnwein

import matplotlib.pyplot as plt
from femedu.examples.Example import *

from femedu.domain import *
from femedu.solver.NewtonRaphsonSolver import *
from femedu.elements.finite.Truss import *
from femedu.elements.finite.Frame2D import *
from femedu.materials.FiberMaterial import *
from femedu.materials.ElasticSection import *


class ExampleMixed01(Example):

    def problem(self):
        # initialize a system model

        B = 80.
        H = 50.

        E  = 29000.0   # steel MOE

        A = 20.0       # frame area
        I = 10.0       # frame moment of inertia
        Ab = 1.0       # brace area

        w = 0.50       # uniform load on floor beam

        Ph = 20.00      # additional horizontal load per floor

        # ========== setting global parameters ==============

        target_load_level = 10
        max_steps = 10
        load_levels = np.linspace(0, target_load_level, max_steps)

        # ========= build your structural model =============

        model = System()
        model.setSolver(NewtonRaphsonSolver())

        X10 = Node(0.0, 0.0)
        X11 = Node(0.0, H)

        X20 = Node(B, 0.0)
        X21 = Node(B, H)

        model.addNode(X10,X11)
        model.addNode(X20,X21)

        # columns

        frameParams = {'E': E, 'A': A, 'I': I}
        C11 = Frame2D(X10, X11, ElasticSection(frameParams))
        C21 = Frame2D(X20, X21, ElasticSection(frameParams))
        model.addElement(C11,C21)

        # floors

        params = {'E': E, 'A': A, 'I': 8*I}
        F11 = Frame2D(X11, X21, ElasticSection(params))
        model.addElement(F11)

        # braces

        braceParams = {'E': E, 'A': Ab}
        model += Truss(X10, X21, FiberMaterial(braceParams))

        # fixities
        X10.fixDOF('ux','uy','rz')   # fixed
        X20.fixDOF('ux','uy','rz')   # fixed

        # reference load
        #Pcr = np.pi**2 * EI / L**2
        model.resetLoad()            # size load vector and initialize
        #model.addLoad(Xn, -Pcr, dof=0) # add a horizontal force (first dof only) ; remember C-style indexing: 0,1,...,(n-1)

        # floor loading as distributed loads ...
        F11.setDistLoad(-w)

        # wind load ...
        X11.addLoad([Ph],['ux'])   # horizontal load

        # show model information
        model.report()

        print("\n==== perform the analysis ===\n")

        # * apply the load in multiple smaller load steps

        # set up data recorder
        model.initRecorder()

        # initialize the analysis:
        model.resetDisplacements()   # set U to all zeros
        model.setLoadFactor(0.0)     # define a known equilibrium solution

        model.plot(factor=0.0, title="undeformed system", filename="mixed01_undeformed.png")

        model.startRecorder()

        # solve for all load_levels
        for loadfactor in load_levels:

            # define node X2 as the controled node; downward direction is prescribed:
            model.setLoadFactor(loadfactor)
            model.solve(verbose=True)

            model.recordThisStep()

            print("\n=== next load level ===\n")

        #
        # ==== create some nice plots ===
        #

        model.report()

        model.plot(factor=10.0, filename="mixed01_deformed.png")
        model.beamValuePlot("F", filename="mixed01_force.png")
        model.beamValuePlot("V", filename="mixed01_shear.png")
        model.beamValuePlot("M", filename="mixed01_moment.png")

Run the example by creating an instance of the problem and executing it by calling Example.run()

if __name__ == "__main__":
    ex = ExampleMixed01()
    ex.run()
  • undeformed system
  • Deformed System (magnification=10.00)
  • Axial Forces
  • Shear Forces
  • Bending Moment
System Analysis Report
=======================

Nodes:
---------------------
  Node_4710:
      x:    [0.000 0.000]
      fix:  ['ux', 'uy', 'rz']
      u:    None
  Node_4711:
      x:    [0.000 50.000]
      P:    [20.000 0.000 0.000]
      u:    None
  Node_4712:
      x:    [80.000 0.000]
      fix:  ['ux', 'uy', 'rz']
      u:    None
  Node_4713:
      x:    [80.000 50.000]
      u:    None

Elements:
---------------------
  Frame2D_7039: nodes ( Node_4710 Node_4711 )
      material: ElasticSection
      internal forces: f0=0.00 V0=0.00 M0=0.00 fl=0.00 Vl=0.00 Ml=0.00 Pw=0.00 Mw=0.00
  Frame2D_7040: nodes ( Node_4712 Node_4713 )
      material: ElasticSection
      internal forces: f0=0.00 V0=0.00 M0=0.00 fl=0.00 Vl=0.00 Ml=0.00 Pw=0.00 Mw=0.00
  Frame2D_7041: nodes ( Node_4711 Node_4713 )
      material: ElasticSection
      internal forces: f0=0.00 V0=0.00 M0=0.00 fl=0.00 Vl=0.00 Ml=0.00 Pw=0.00 Mw=0.00
  Truss: Node_4710 to Node_4713:
      material properties: FiberMaterial(Material)({'E': 29000.0, 'A': 1.0, 'nu': 0.0, 'fy': 1e+30})  strain:0.0   stress:{'xx': 0.0, 'yy': 0.0, 'zz': 0.0, 'xy': 0.0}
      internal force: 0.0


==== perform the analysis ===

/Users/pmackenz/Development/Educational/FEM.edu/venv/lib/python3.13/site-packages/matplotlib/quiver.py:678: RuntimeWarning: Mean of empty slice.
  amean = a.mean()
/Users/pmackenz/Development/Educational/FEM.edu/venv/lib/python3.13/site-packages/numpy/_core/_methods.py:145: RuntimeWarning: invalid value encountered in scalar divide
  ret = ret.dtype.type(ret / rcount)
norm of the out-of-balance force:   0.0000e+00
+

=== next load level ===

norm of the out-of-balance force:   4.2079e+02
norm of the out-of-balance force:   2.6164e+00
norm of the out-of-balance force:   3.8196e-03
norm of the out-of-balance force:   2.1116e-06
norm of the out-of-balance force:   2.4046e-09
+

=== next load level ===

norm of the out-of-balance force:   4.2079e+02
norm of the out-of-balance force:   5.2938e+00
norm of the out-of-balance force:   1.6230e-02
norm of the out-of-balance force:   1.8540e-05
norm of the out-of-balance force:   4.5230e-08
+

=== next load level ===

norm of the out-of-balance force:   4.2079e+02
norm of the out-of-balance force:   8.0343e+00
norm of the out-of-balance force:   3.7783e-02
norm of the out-of-balance force:   6.6350e-05
norm of the out-of-balance force:   2.4887e-07
+

=== next load level ===

norm of the out-of-balance force:   4.2079e+02
norm of the out-of-balance force:   1.0840e+01
norm of the out-of-balance force:   6.9061e-02
norm of the out-of-balance force:   1.6541e-04
norm of the out-of-balance force:   8.4113e-07
+

=== next load level ===

norm of the out-of-balance force:   4.2079e+02
norm of the out-of-balance force:   1.3714e+01
norm of the out-of-balance force:   1.1068e-01
norm of the out-of-balance force:   3.3876e-04
norm of the out-of-balance force:   2.1826e-06
norm of the out-of-balance force:   1.0892e-08
+

=== next load level ===

norm of the out-of-balance force:   4.2079e+02
norm of the out-of-balance force:   1.6658e+01
norm of the out-of-balance force:   1.6331e-01
norm of the out-of-balance force:   6.1296e-04
norm of the out-of-balance force:   4.7969e-06
norm of the out-of-balance force:   2.9011e-08
+

=== next load level ===

norm of the out-of-balance force:   4.2079e+02
norm of the out-of-balance force:   1.9675e+01
norm of the out-of-balance force:   2.2764e-01
norm of the out-of-balance force:   1.0186e-03
norm of the out-of-balance force:   9.4058e-06
norm of the out-of-balance force:   6.7100e-08
+

=== next load level ===

norm of the out-of-balance force:   4.2079e+02
norm of the out-of-balance force:   2.2768e+01
norm of the out-of-balance force:   3.0444e-01
norm of the out-of-balance force:   1.5908e-03
norm of the out-of-balance force:   1.6971e-05
norm of the out-of-balance force:   1.3989e-07
+

=== next load level ===

norm of the out-of-balance force:   4.2079e+02
norm of the out-of-balance force:   2.5940e+01
norm of the out-of-balance force:   3.9449e-01
norm of the out-of-balance force:   2.3697e-03
norm of the out-of-balance force:   2.8743e-05
norm of the out-of-balance force:   2.6942e-07
+

=== next load level ===


System Analysis Report
=======================

Nodes:
---------------------
  Node_4710:
      x:    [0.000 0.000]
      fix:  ['ux', 'uy', 'rz']
      u:    [0.000 0.000 0.000]
  Node_4711:
      x:    [0.000 50.000]
      P:    [20.000 0.000 0.000]
      u:    [0.811 -0.016 -0.038]
  Node_4712:
      x:    [80.000 0.000]
      fix:  ['ux', 'uy', 'rz']
      u:    [0.000 0.000 0.000]
  Node_4713:
      x:    [80.000 50.000]
      u:    [0.783 -0.027 0.032]

Elements:
---------------------
  Frame2D_7039: nodes ( Node_4710 Node_4711 )
      material: ElasticSection
      internal forces: f0=-188.51 V0=-6.64 M0=-98.88 fl=-188.51 Vl=-6.64 Ml=-278.06 Pw=0.00 Mw=0.00
  Frame2D_7040: nodes ( Node_4712 Node_4713 )
      material: ElasticSection
      internal forces: f0=-316.33 V0=37.17 M0=-911.14 fl=-316.33 Vl=37.17 Ml=1195.25 Pw=0.00 Mw=0.00
  Frame2D_7041: nodes ( Node_4711 Node_4713 )
      material: ElasticSection
      internal forces: f0=-206.64 V0=-11.49 M0=2388.61 fl=-206.64 Vl=-11.49 Ml=1471.42 Pw=-200.00 Mw=-2666.67
  Truss: Node_4710 to Node_4713:
      material properties: FiberMaterial(Material)({'E': 29000.0, 'A': 1.0, 'nu': 0.0, 'fy': 1e+30})  strain:0.006871468961325107   stress:{'xx': np.float64(199.27259987842808), 'yy': 0.0, 'zz': 0.0, 'xy': 0.0}
      internal force: 199.27259987842808

Total running time of the script: (0 minutes 0.778 seconds)

Gallery generated by Sphinx-Gallery