A first 1D spring system with nicer plots

             o---/\/\/\---o---/\/\/\---o
x---/\/\/\---o                         o--->
             o-------/\/\/\/\/\--------o

x ... fixed node
o ... free node (moving in x-direction)

This problem is mechanically identical to A first 1D spring system but demonstrates the use of the leader-follower concept built into the Node class. We are using the concept to move springs apart in plots while maintaining the 1d kinematics.

Note

This example uses

Initialization

from femedu.domain import *
from femedu.elements.linear import Spring

Building the model

  1. Initializing a model

model = System()
  1. Defining nodes

nd1  = Node(0.0, 0.0)
nd2  = Node(2.0, 0.0)
nd2a = Node(2.0, 1.0)
nd2b = Node(2.0,-1.0)
nd3  = Node(4.0, 1.0)
nd4  = Node(6.0, 0.0)
nd4a = Node(6.0, 1.0)
nd4b = Node(6.0,-1.0)

model.addNode(nd1, nd2, nd3, nd4)

nd2a.make_follower(nd2)
nd2b.make_follower(nd2)
nd4a.make_follower(nd4)
nd4b.make_follower(nd4)
  1. Creating the springs

springA = Spring(nd1, nd2, 15)
springB = Spring(nd2a, nd3, 10)
springC = Spring(nd3, nd4a, 10)
springD = Spring(nd2b, nd4b, 10)

model.addElement(springA,springB,springC,springD)
  1. Applying the essential boundary conditions

nd1.fixDOF('ux')
  1. Applying loads

nd4.setLoad([2.0],['ux'])

You may check your model any time by executing

model.report()
System Analysis Report
=======================

Nodes:
---------------------
  Node_4:
      x:    [0.000 0.000]
      fix:  ['ux']
      u:    None
  Node_5:
      x:    [2.000 0.000]
      u:    None
  Node_8:
      x:    [4.000 1.000]
      u:    None
  Node_9:
      x:    [6.000 0.000]
      P:    [2.000]
      u:    None

Elements:
---------------------
  Spring Elem_4: Node_4 to Node_5 with c=15
      length change:  delta = 0.0
      internal force: force = 0.0
  Spring Elem_5: Node_6 to Node_8 with c=10
      length change:  delta = 0.0
      internal force: force = 0.0
  Spring Elem_6: Node_8 to Node_10 with c=10
      length change:  delta = 0.0
      internal force: force = 0.0
  Spring Elem_7: Node_7 to Node_11 with c=10
      length change:  delta = 0.0
      internal force: force = 0.0

Performing the analysis

  1. Assembly and solve

model.solve()
  1. Check out displacements and internal forces

model.report()
System Analysis Report
=======================

Nodes:
---------------------
  Node_4:
      x:    [0.000 0.000]
      fix:  ['ux']
      u:    [0.000]
  Node_5:
      x:    [2.000 0.000]
      u:    [0.133]
  Node_8:
      x:    [4.000 1.000]
      u:    [0.200]
  Node_9:
      x:    [6.000 0.000]
      P:    [2.000]
      u:    [0.267]

Elements:
---------------------
  Spring Elem_4: Node_4 to Node_5 with c=15
      length change:  delta = 0.1333333333333333
      internal force: force = 1.9999999999999996
  Spring Elem_5: Node_6 to Node_8 with c=10
      length change:  delta = 0.06666666666666671
      internal force: force = 0.6666666666666671
  Spring Elem_6: Node_8 to Node_10 with c=10
      length change:  delta = 0.06666666666666665
      internal force: force = 0.6666666666666665
  Spring Elem_7: Node_7 to Node_11 with c=10
      length change:  delta = 0.13333333333333336
      internal force: force = 1.3333333333333335

We can also create a force plot, though it doesn’t look all that nice in 1D

model.beamValuePlot('f')
model.plot(factor=10.0)
  • Axial Forces
  • Deformed System (magnification=10.00)

Total running time of the script: (0 minutes 0.130 seconds)

Gallery generated by Sphinx-Gallery