PlateSection

Warning

This material is not yet available

The plate section model implements a complex cross section built from multiple PlaneStress material class instances

\[\varepsilon_{kl}(z) = \varepsilon^0_{kl} - z \,\phi_{kl}\]
\[n^{ij} = \int_{-h/2}^{h/2} \sigma^{ij}(z)\, dz \qquad \qquad m^{ij} = -\int_{-h/2}^{h/2} z\sigma^{ij}(z)\, dz\]

Stress \(\sigma^{ij}(z)\) is obtained from a PlaneStress material class material layer at distance z. Through-the-thickness integration is performed numerically as a sum over layers.

The PlateSection material will further compute the tangent stiffness tensors defined as:

\[dn^{ij} =: \mathbb{D}^{ijkl} \, d\varepsilon^{0}_{kl} +\mathbb{C}^{ijkl} d\phi_{kl}\]
\[dm^{ij} =: \mathbb{C}^{ijkl} \, d\varepsilon^{0}_{kl} + \mathbb{B}^{ijkl} \, d\phi_{kl}\]

where

\(\varepsilon^0_{ij}\)

membrane strain (input)

\(\phi_{ij}\)

curvature change (input)

\(n^{ij}\)

component of resulting membrane force (output)

\(m^{ij}\)

component of resulting moment (output)

\(\mathcal{C}^{ijkl}(z)\)

material tangent stiffness of a plane-stress material layer at distance z

\(\mathbb{D}^{ijkl}\)

axial stiffness

\(\mathbb{B}^{ijkl}\)

flexural stiffness

\(\mathbb{C}^{ijkl}\)

coupling stiffness