Buckling of a vertical beam with pin-pin support

modeled using a 2D frame element

|
| P
v
x o ... support
I
x   ... node
I
x   ... node
^   ... support

x ..... node
I ... frame element
<-- ... applied force
^ ..... pin support
o ..... roller support

degrees of freedom:
0 ... horizontal displacement
1 ... vertical displacement
2 ... rotation, theta
setting given parameters

N = 2

number of elements

L = 100.0

column length

EA = 2000000.0

axial stiffness

EI = 21000.0

flexural stiffness

w = 0.1

applied lateral load

Author: Peter Mackenzie-Helnwein

from femedu.examples.Example import *

from femedu.domain import *
from femedu.solver.NewtonRaphsonSolver import *
from femedu.elements.finite.Frame2D import *
from femedu.materials.ElasticSection import *


class ExampleFrame02(Example):

    def problem(self):
        # initialize a system model

        N  = 8     # number of elements
        L  = 100.0
        E  = 20000.
        EA = 2000000.0
        EI = 210000.0
        w  = -0.1

        params = {'E': E, 'A': EA/E, 'I': EI/E}

        model = System()
        model.setSolver(NewtonRaphsonSolver())

        # create nodes

        nd0 = Node(0.0, 0.0)
        model += nd0

        ndi = nd0
        for i in range(N):
            # nodes
            ndj = Node( 0.0, (i+1)*L/N )
            model += ndj

            # elements
            elem = Frame2D(ndi, ndj, ElasticSection(params))
            elem.setDistLoad(w)
            model += elem

            ndi = ndj

        # define support(s)
        nd0.fixDOF('ux', 'uy')    # horizontal and vertical support bottom end
        ndi.fixDOF('ux')          # horizontal support top end

        # add loads
        # .. load only the upper nodes
        Pcr = np.pi**2 * EI / L**2
        ndi.setLoad((-0.5*Pcr,), ('uy',))

        # show model information
        print(model)

        model.solve(verbose=True)

        model.report()

        model.plot(factor=10.0, filename="frame2_deformed.png")

        model.beamValuePlot("F", filename="frame2_force.png")
        model.beamValuePlot("V", filename="frame2_shear.png")
        model.beamValuePlot("M", filename="frame2_moment.png")

        return

Run the example by creating an instance of the problem and executing it by calling Example.run()

if __name__ == "__main__":
    ex = ExampleFrame02()
    ex.run()
  • Deformed System (magnification=10.00)
  • Axial Forces
  • Shear Forces
  • Bending Moment
System object
Node_186(x=[0 0], u=None)
Node_187(x=[0 12.5], u=None)
Node_188(x=[0 25], u=None)
Node_189(x=[0 37.5], u=None)
Node_190(x=[0 50], u=None)
Node_191(x=[0 62.5], u=None)
Node_192(x=[0 75], u=None)
Node_193(x=[0 87.5], u=None)
Node_194(x=[0 100], u=None)
Frame2D(Node_186, Node_187, ElasticSection(Material)({'E': 20000.0, 'A': 100.0, 'I': 10.5, 'nu': 0.0, 'fy': 1e+30}))
Frame2D(Node_187, Node_188, ElasticSection(Material)({'E': 20000.0, 'A': 100.0, 'I': 10.5, 'nu': 0.0, 'fy': 1e+30}))
Frame2D(Node_188, Node_189, ElasticSection(Material)({'E': 20000.0, 'A': 100.0, 'I': 10.5, 'nu': 0.0, 'fy': 1e+30}))
Frame2D(Node_189, Node_190, ElasticSection(Material)({'E': 20000.0, 'A': 100.0, 'I': 10.5, 'nu': 0.0, 'fy': 1e+30}))
Frame2D(Node_190, Node_191, ElasticSection(Material)({'E': 20000.0, 'A': 100.0, 'I': 10.5, 'nu': 0.0, 'fy': 1e+30}))
Frame2D(Node_191, Node_192, ElasticSection(Material)({'E': 20000.0, 'A': 100.0, 'I': 10.5, 'nu': 0.0, 'fy': 1e+30}))
Frame2D(Node_192, Node_193, ElasticSection(Material)({'E': 20000.0, 'A': 100.0, 'I': 10.5, 'nu': 0.0, 'fy': 1e+30}))
Frame2D(Node_193, Node_194, ElasticSection(Material)({'E': 20000.0, 'A': 100.0, 'I': 10.5, 'nu': 0.0, 'fy': 1e+30}))
norm of the out-of-balance force:   1.0370e+02
norm of the out-of-balance force:   1.6462e+00
norm of the out-of-balance force:   1.5490e-10
+

System Analysis Report
=======================

Nodes:
---------------------
  Node_186:
      x:    [0.000 0.000]
      fix:  ['ux', 'uy']
      u:    [0.000 0.000 -0.039]
  Node_187:
      x:    [0.000 12.500]
      u:    [0.479 -0.001 -0.036]
  Node_188:
      x:    [0.000 25.000]
      u:    [0.882 -0.001 -0.027]
  Node_189:
      x:    [0.000 37.500]
      u:    [1.149 -0.002 -0.015]
  Node_190:
      x:    [0.000 50.000]
      u:    [1.242 -0.003 0.000]
  Node_191:
      x:    [0.000 62.500]
      u:    [1.149 -0.003 0.015]
  Node_192:
      x:    [0.000 75.000]
      u:    [0.882 -0.004 0.027]
  Node_193:
      x:    [0.000 87.500]
      u:    [0.479 -0.005 0.036]
  Node_194:
      x:    [0.000 100.000]
      fix:  ['ux']
      P:    [0.000 -103.631 0.000]
      u:    [0.000 -0.005 0.039]

Elements:
---------------------
  Frame2D_298: nodes ( Node_186 Node_187 )
      material: ElasticSection
      internal forces: f0=-103.63 V0=4.37 M0=1.30 fl=-103.63 Vl=4.37 Ml=105.64 Pw=-0.62 Mw=-1.30
  Frame2D_299: nodes ( Node_187 Node_188 )
      material: ElasticSection
      internal forces: f0=-103.63 V0=3.12 M0=105.64 fl=-103.63 Vl=3.12 Ml=186.45 Pw=-0.62 Mw=-1.30
  Frame2D_300: nodes ( Node_188 Node_189 )
      material: ElasticSection
      internal forces: f0=-103.63 V0=1.87 M0=186.45 fl=-103.63 Vl=1.87 Ml=237.56 Pw=-0.62 Mw=-1.30
  Frame2D_301: nodes ( Node_189 Node_190 )
      material: ElasticSection
      internal forces: f0=-103.63 V0=0.62 M0=237.56 fl=-103.63 Vl=0.62 Ml=255.04 Pw=-0.62 Mw=-1.30
  Frame2D_302: nodes ( Node_190 Node_191 )
      material: ElasticSection
      internal forces: f0=-103.63 V0=-0.63 M0=255.04 fl=-103.63 Vl=-0.63 Ml=237.56 Pw=-0.62 Mw=-1.30
  Frame2D_303: nodes ( Node_191 Node_192 )
      material: ElasticSection
      internal forces: f0=-103.63 V0=-1.88 M0=237.56 fl=-103.63 Vl=-1.88 Ml=186.45 Pw=-0.62 Mw=-1.30
  Frame2D_304: nodes ( Node_192 Node_193 )
      material: ElasticSection
      internal forces: f0=-103.63 V0=-3.13 M0=186.45 fl=-103.63 Vl=-3.13 Ml=105.64 Pw=-0.62 Mw=-1.30
  Frame2D_305: nodes ( Node_193 Node_194 )
      material: ElasticSection
      internal forces: f0=-103.63 V0=-4.38 M0=105.64 fl=-103.63 Vl=-4.38 Ml=1.30 Pw=-0.62 Mw=-1.30

Total running time of the script: (0 minutes 0.539 seconds)

Gallery generated by Sphinx-Gallery