Note
Go to the end to download the full example code.
Buckling of a vertical beam with pin-pin support
modeled using a 2D frame element
|
| P
v
x o ... support
I
x ... node
I
x ... node
^ ... support
x ..... node
I ... frame element
<-- ... applied force
^ ..... pin support
o ..... roller support
degrees of freedom:
0 ... horizontal displacement
1 ... vertical displacement
2 ... rotation, theta
N = 2 |
number of elements |
L = 100.0 |
column length |
EA = 2000000.0 |
axial stiffness |
EI = 21000.0 |
flexural stiffness |
w = 0.1 |
applied lateral load |
Author: Peter Mackenzie-Helnwein
from femedu.examples.Example import *
from femedu.domain import *
from femedu.solver.NewtonRaphsonSolver import *
from femedu.elements.finite.Frame2D import *
from femedu.materials.ElasticSection import *
class ExampleFrame02(Example):
def problem(self):
# initialize a system model
N = 8 # number of elements
L = 100.0
E = 20000.
EA = 2000000.0
EI = 210000.0
w = -0.1
params = {'E': E, 'A': EA/E, 'I': EI/E}
model = System()
model.setSolver(NewtonRaphsonSolver())
# create nodes
nd0 = Node(0.0, 0.0)
model += nd0
ndi = nd0
for i in range(N):
# nodes
ndj = Node( 0.0, (i+1)*L/N )
model += ndj
# elements
elem = Frame2D(ndi, ndj, ElasticSection(params))
elem.setDistLoad(w)
model += elem
ndi = ndj
# define support(s)
nd0.fixDOF('ux', 'uy') # horizontal and vertical support bottom end
ndi.fixDOF('ux') # horizontal support top end
# add loads
# .. load only the upper nodes
Pcr = np.pi**2 * EI / L**2
ndi.setLoad((-0.5*Pcr,), ('uy',))
# show model information
print(model)
model.solve(verbose=True)
model.report()
model.plot(factor=10.0, filename="frame2_deformed.png")
model.beamValuePlot("F", filename="frame2_force.png")
model.beamValuePlot("V", filename="frame2_shear.png")
model.beamValuePlot("M", filename="frame2_moment.png")
return
Run the example by creating an instance of the problem and executing it by calling Example.run()
if __name__ == "__main__":
ex = ExampleFrame02()
ex.run()
System object
Node_186(x=[0 0], u=None)
Node_187(x=[0 12.5], u=None)
Node_188(x=[0 25], u=None)
Node_189(x=[0 37.5], u=None)
Node_190(x=[0 50], u=None)
Node_191(x=[0 62.5], u=None)
Node_192(x=[0 75], u=None)
Node_193(x=[0 87.5], u=None)
Node_194(x=[0 100], u=None)
Frame2D(Node_186, Node_187, ElasticSection(Material)({'E': 20000.0, 'A': 100.0, 'I': 10.5, 'nu': 0.0, 'fy': 1e+30}))
Frame2D(Node_187, Node_188, ElasticSection(Material)({'E': 20000.0, 'A': 100.0, 'I': 10.5, 'nu': 0.0, 'fy': 1e+30}))
Frame2D(Node_188, Node_189, ElasticSection(Material)({'E': 20000.0, 'A': 100.0, 'I': 10.5, 'nu': 0.0, 'fy': 1e+30}))
Frame2D(Node_189, Node_190, ElasticSection(Material)({'E': 20000.0, 'A': 100.0, 'I': 10.5, 'nu': 0.0, 'fy': 1e+30}))
Frame2D(Node_190, Node_191, ElasticSection(Material)({'E': 20000.0, 'A': 100.0, 'I': 10.5, 'nu': 0.0, 'fy': 1e+30}))
Frame2D(Node_191, Node_192, ElasticSection(Material)({'E': 20000.0, 'A': 100.0, 'I': 10.5, 'nu': 0.0, 'fy': 1e+30}))
Frame2D(Node_192, Node_193, ElasticSection(Material)({'E': 20000.0, 'A': 100.0, 'I': 10.5, 'nu': 0.0, 'fy': 1e+30}))
Frame2D(Node_193, Node_194, ElasticSection(Material)({'E': 20000.0, 'A': 100.0, 'I': 10.5, 'nu': 0.0, 'fy': 1e+30}))
norm of the out-of-balance force: 1.0370e+02
norm of the out-of-balance force: 1.6462e+00
norm of the out-of-balance force: 1.5490e-10
+
System Analysis Report
=======================
Nodes:
---------------------
Node_186:
x: [0.000 0.000]
fix: ['ux', 'uy']
u: [0.000 0.000 -0.039]
Node_187:
x: [0.000 12.500]
u: [0.479 -0.001 -0.036]
Node_188:
x: [0.000 25.000]
u: [0.882 -0.001 -0.027]
Node_189:
x: [0.000 37.500]
u: [1.149 -0.002 -0.015]
Node_190:
x: [0.000 50.000]
u: [1.242 -0.003 0.000]
Node_191:
x: [0.000 62.500]
u: [1.149 -0.003 0.015]
Node_192:
x: [0.000 75.000]
u: [0.882 -0.004 0.027]
Node_193:
x: [0.000 87.500]
u: [0.479 -0.005 0.036]
Node_194:
x: [0.000 100.000]
fix: ['ux']
P: [0.000 -103.631 0.000]
u: [0.000 -0.005 0.039]
Elements:
---------------------
Frame2D_298: nodes ( Node_186 Node_187 )
material: ElasticSection
internal forces: f0=-103.63 V0=4.37 M0=1.30 fl=-103.63 Vl=4.37 Ml=105.64 Pw=-0.62 Mw=-1.30
Frame2D_299: nodes ( Node_187 Node_188 )
material: ElasticSection
internal forces: f0=-103.63 V0=3.12 M0=105.64 fl=-103.63 Vl=3.12 Ml=186.45 Pw=-0.62 Mw=-1.30
Frame2D_300: nodes ( Node_188 Node_189 )
material: ElasticSection
internal forces: f0=-103.63 V0=1.87 M0=186.45 fl=-103.63 Vl=1.87 Ml=237.56 Pw=-0.62 Mw=-1.30
Frame2D_301: nodes ( Node_189 Node_190 )
material: ElasticSection
internal forces: f0=-103.63 V0=0.62 M0=237.56 fl=-103.63 Vl=0.62 Ml=255.04 Pw=-0.62 Mw=-1.30
Frame2D_302: nodes ( Node_190 Node_191 )
material: ElasticSection
internal forces: f0=-103.63 V0=-0.63 M0=255.04 fl=-103.63 Vl=-0.63 Ml=237.56 Pw=-0.62 Mw=-1.30
Frame2D_303: nodes ( Node_191 Node_192 )
material: ElasticSection
internal forces: f0=-103.63 V0=-1.88 M0=237.56 fl=-103.63 Vl=-1.88 Ml=186.45 Pw=-0.62 Mw=-1.30
Frame2D_304: nodes ( Node_192 Node_193 )
material: ElasticSection
internal forces: f0=-103.63 V0=-3.13 M0=186.45 fl=-103.63 Vl=-3.13 Ml=105.64 Pw=-0.62 Mw=-1.30
Frame2D_305: nodes ( Node_193 Node_194 )
material: ElasticSection
internal forces: f0=-103.63 V0=-4.38 M0=105.64 fl=-103.63 Vl=-4.38 Ml=1.30 Pw=-0.62 Mw=-1.30
Total running time of the script: (0 minutes 0.539 seconds)