Buckling of a beam with pin-pin support

modeled using a 2D frame element

x============x=============x  <---
^                          o

x ..... node
=== ... frame element
<-- ... applied force
^ ..... pin support
o ..... roller support

degrees of freedom:
0 ... horizontal displacement, u
1 ... vertical displacement, v
2 ... rotation, theta
setting given parameters

N = 2

number of elements

L = 100.0

column length

EA = 2000000.0

axial stiffness

EI = 21000.0

flexural stiffness

w = 0.1

applied lateral load

Author: Peter Mackenzie-Helnwein

from femedu.examples.Example import *

from femedu.domain import *
from femedu.solver.NewtonRaphsonSolver import *
from femedu.elements.finite.Frame2D import *
from femedu.materials.ElasticSection import *


class ExampleFrame01(Example):

    def problem(self):

        #
        # ==== Initialization ====
        #

        # ========== setting mesh parameters ==============

        N = 8         # number of elements in the mesh
        L = 100.0     # column free length


        # ========== setting material parameters ==============

        params = dict(
            E = 20000.,    # Young's modulus
            A = 100.0,     # cross section area
            I = 10.0       # cross section moment of inertia
        )

        # ========== setting load parameters ==============

        w   = -0.1         # uniform lateral load on the column
        Pcr = np.pi**2 * params['E'] * params['I'] / L**2    # Euler buckling load

        # ========== setting analysis parameters ==============

        target_load_level = 0.99      # 99% of Euler load
        max_steps = 10                # solve max_steps points on the primary path


        w   *= 0.01
        Pcr *= 0.01
        target_load_level = 99.      # 99% of Euler load



        # define a list of target load levels
        load_levels = np.linspace(0, target_load_level, max_steps)

        #
        # ==== Build the system model ====
        #

        model = System()
        model.setSolver(NewtonRaphsonSolver())

        # create nodes

        nd0 = Node(0.0, 0.0)
        model += nd0

        ndi = nd0
        for i in range(N):
            # nodes
            ndj = Node( (i+1)*L/N, 0.0 )
            model += ndj

            # elements
            elem = Frame2D(ndi, ndj, ElasticSection(params))
            model += elem

            # ** apply the element portion of the reference load
            elem.setDistLoad(w)

            ndi = ndj    # jump to next element: make current end-node the next start-node

        # define support(s)

        nd0.fixDOF('ux', 'uy')    # horizontal support left end
        ndi.fixDOF('uy')          # vertical support right end

        # ==== complete the reference load ====

        # these are only nodal forces as part of the reference load
        # .. load only the upper node
        ndi.setLoad((-Pcr,), ('ux',))

        # show model information
        print(model)

        #
        # ==== perform the analysis ===
        #

        print("\n==== perform the analysis ===\n")

        # * apply the load in multiple smaller load steps

        # set up data recorder
        model.initRecorder()
        model.trackStability(True)

        # initialize the analysis:
        model.resetDisplacements()   # set U to all zeros
        model.setLoadFactor(0.0)     # define a known equilibrium solution

        model.startRecorder()

        detKt   = []
        lambdas = []

        # solve for all load_levels
        for loadfactor in load_levels:

            # define node X2 as the controled node; downward direction is prescribed:
            model.setLoadFactor(loadfactor)
            model.solve(verbose=True)

            # stability check
            lambdas.append(model.loadfactor)
            detKt.append(model.solver.checkStability())

            # report results
            print('+')
            #model.report()

            print("\n=== next load level ===\n")


        #
        # ==== create some nice plots ===
        #

        model.report()

        model.plot(factor=1.0, filename="frame1_deformed.png")

        fig, ax = plt.subplots()

        ax.plot(lambdas,detKt,'--*r')
        ax.grid(True)
        ax.set_xlabel('Load factor, $ \\lambda $')
        ax.set_ylabel("Stability index, $ {det}\\: {\\bf K}_t $")

        fig.savefig("frame1_stability.png")
        fig.show()

        model.beamValuePlot("F", filename="frame1_force.png")
        model.beamValuePlot("V", filename="frame1_shear.png")
        model.beamValuePlot("M", filename="frame1_moment.png")

        model.plotBucklingMode(factor=10., filename="frame1_buckling_mode0.png")

Run the example by creating an instance of the problem and executing it by calling Example.run()

if __name__ == "__main__":
    ex = ExampleFrame01()
    ex.run()
  • Deformed System (magnification=1.00)
  • plot frame01
  • Axial Forces
  • Shear Forces
  • Bending Moment
  • Mode Shape for $ \lambda = 0.02 $
System object
Node_177(x=[0 0], u=None)
Node_178(x=[12.5 0], u=None)
Node_179(x=[25 0], u=None)
Node_180(x=[37.5 0], u=None)
Node_181(x=[50 0], u=None)
Node_182(x=[62.5 0], u=None)
Node_183(x=[75 0], u=None)
Node_184(x=[87.5 0], u=None)
Node_185(x=[100 0], u=None)
Frame2D(Node_177, Node_178, ElasticSection(Material)({'E': 20000.0, 'A': 100.0, 'I': 10.0, 'nu': 0.0, 'fy': 1e+30}))
Frame2D(Node_178, Node_179, ElasticSection(Material)({'E': 20000.0, 'A': 100.0, 'I': 10.0, 'nu': 0.0, 'fy': 1e+30}))
Frame2D(Node_179, Node_180, ElasticSection(Material)({'E': 20000.0, 'A': 100.0, 'I': 10.0, 'nu': 0.0, 'fy': 1e+30}))
Frame2D(Node_180, Node_181, ElasticSection(Material)({'E': 20000.0, 'A': 100.0, 'I': 10.0, 'nu': 0.0, 'fy': 1e+30}))
Frame2D(Node_181, Node_182, ElasticSection(Material)({'E': 20000.0, 'A': 100.0, 'I': 10.0, 'nu': 0.0, 'fy': 1e+30}))
Frame2D(Node_182, Node_183, ElasticSection(Material)({'E': 20000.0, 'A': 100.0, 'I': 10.0, 'nu': 0.0, 'fy': 1e+30}))
Frame2D(Node_183, Node_184, ElasticSection(Material)({'E': 20000.0, 'A': 100.0, 'I': 10.0, 'nu': 0.0, 'fy': 1e+30}))
Frame2D(Node_184, Node_185, ElasticSection(Material)({'E': 20000.0, 'A': 100.0, 'I': 10.0, 'nu': 0.0, 'fy': 1e+30}))

==== perform the analysis ===

norm of the out-of-balance force:   0.0000e+00

 ** Stability check: (smallest 1 eigenvalues of Kt)
                        mode 0:        2.43

+

 ** Stability check: (smallest eigenvalue of Kt) = 2.432144038335496

+

=== next load level ===

norm of the out-of-balance force:   2.1717e+01
norm of the out-of-balance force:   3.9834e-02
norm of the out-of-balance force:   3.5439e-11

 ** Stability check: (smallest 1 eigenvalues of Kt)
                        mode 0:        2.16

+

 ** Stability check: (smallest eigenvalue of Kt) = 2.1646162524938175

+

=== next load level ===

norm of the out-of-balance force:   2.1717e+01
norm of the out-of-balance force:   8.9520e-02
norm of the out-of-balance force:   2.5189e-11

 ** Stability check: (smallest 1 eigenvalues of Kt)
                        mode 0:        1.90

+

 ** Stability check: (smallest eigenvalue of Kt) = 1.8970864809980343

+

=== next load level ===

norm of the out-of-balance force:   2.1717e+01
norm of the out-of-balance force:   1.5323e-01
norm of the out-of-balance force:   2.8547e-11

 ** Stability check: (smallest 1 eigenvalues of Kt)
                        mode 0:        1.63

+

 ** Stability check: (smallest eigenvalue of Kt) = 1.6295547208400913

+

=== next load level ===

norm of the out-of-balance force:   2.1717e+01
norm of the out-of-balance force:   2.3787e-01
norm of the out-of-balance force:   4.7667e-11

 ** Stability check: (smallest 1 eigenvalues of Kt)
                        mode 0:        1.36

+

 ** Stability check: (smallest eigenvalue of Kt) = 1.3620209694352918

+

=== next load level ===

norm of the out-of-balance force:   2.1717e+01
norm of the out-of-balance force:   3.5578e-01
norm of the out-of-balance force:   4.8415e-11

 ** Stability check: (smallest 1 eigenvalues of Kt)
                        mode 0:        1.09

+

 ** Stability check: (smallest eigenvalue of Kt) = 1.0944852245476049

+

=== next load level ===

norm of the out-of-balance force:   2.1717e+01
norm of the out-of-balance force:   5.3137e-01
norm of the out-of-balance force:   1.9768e-11

 ** Stability check: (smallest 1 eigenvalues of Kt)
                        mode 0:        0.83

+

 ** Stability check: (smallest eigenvalue of Kt) = 0.8269474836464931

+

=== next load level ===

norm of the out-of-balance force:   2.1717e+01
norm of the out-of-balance force:   8.2064e-01
norm of the out-of-balance force:   2.6538e-12

 ** Stability check: (smallest 1 eigenvalues of Kt)
                        mode 0:        0.56

+

 ** Stability check: (smallest eigenvalue of Kt) = 0.5594077439021518

+

=== next load level ===

norm of the out-of-balance force:   2.1717e+01
norm of the out-of-balance force:   1.3867e+00
norm of the out-of-balance force:   2.6658e-11

 ** Stability check: (smallest 1 eigenvalues of Kt)
                        mode 0:        0.29

+

 ** Stability check: (smallest eigenvalue of Kt) = 0.2918660029127227

+

=== next load level ===

norm of the out-of-balance force:   2.1717e+01
norm of the out-of-balance force:   2.9907e+00
norm of the out-of-balance force:   6.7525e-09

 ** Stability check: (smallest 1 eigenvalues of Kt)
                        mode 0:        0.02

+

 ** Stability check: (smallest eigenvalue of Kt) = 0.02432225800791405

+

=== next load level ===


System Analysis Report
=======================

Nodes:
---------------------
  Node_177:
      x:    [0.000 0.000]
      fix:  ['ux', 'uy']
      u:    [0.000 0.000 -2.033]
  Node_178:
      x:    [12.500 0.000]
      u:    [-0.001 -24.762 -1.878]
  Node_179:
      x:    [25.000 0.000]
      u:    [-0.002 -45.751 -1.437]
  Node_180:
      x:    [37.500 0.000]
      u:    [-0.004 -59.773 -0.778]
  Node_181:
      x:    [50.000 0.000]
      u:    [-0.005 -64.697 -0.000]
  Node_182:
      x:    [62.500 0.000]
      u:    [-0.006 -59.773 0.778]
  Node_183:
      x:    [75.000 0.000]
      u:    [-0.007 -45.751 1.437]
  Node_184:
      x:    [87.500 0.000]
      u:    [-0.009 -24.762 1.878]
  Node_185:
      x:    [100.000 0.000]
      fix:  ['uy']
      P:    [-1.974 0.000 0.000]
      u:    [-0.010 0.000 2.033]

Elements:
---------------------
  Frame2D_290: nodes ( Node_177 Node_178 )
      material: ElasticSection
      internal forces: f0=-195.42 V0=4.33 M0=1.29 fl=-195.42 Vl=4.33 Ml=4894.46 Pw=-0.62 Mw=-1.29
  Frame2D_291: nodes ( Node_178 Node_179 )
      material: ElasticSection
      internal forces: f0=-195.42 V0=3.09 M0=4894.46 fl=-195.42 Vl=3.09 Ml=9034.77 Pw=-0.62 Mw=-1.29
  Frame2D_292: nodes ( Node_179 Node_180 )
      material: ElasticSection
      internal forces: f0=-195.42 V0=1.86 M0=9034.77 fl=-195.42 Vl=1.86 Ml=11798.12 Pw=-0.62 Mw=-1.29
  Frame2D_293: nodes ( Node_180 Node_181 )
      material: ElasticSection
      internal forces: f0=-195.42 V0=0.62 M0=11798.12 fl=-195.42 Vl=0.62 Ml=12767.97 Pw=-0.62 Mw=-1.29
  Frame2D_294: nodes ( Node_181 Node_182 )
      material: ElasticSection
      internal forces: f0=-195.42 V0=-0.62 M0=12767.97 fl=-195.42 Vl=-0.62 Ml=11798.12 Pw=-0.62 Mw=-1.29
  Frame2D_295: nodes ( Node_182 Node_183 )
      material: ElasticSection
      internal forces: f0=-195.42 V0=-1.86 M0=11798.12 fl=-195.42 Vl=-1.86 Ml=9034.77 Pw=-0.62 Mw=-1.29
  Frame2D_296: nodes ( Node_183 Node_184 )
      material: ElasticSection
      internal forces: f0=-195.42 V0=-3.09 M0=9034.77 fl=-195.42 Vl=-3.09 Ml=4894.46 Pw=-0.62 Mw=-1.29
  Frame2D_297: nodes ( Node_184 Node_185 )
      material: ElasticSection
      internal forces: f0=-195.42 V0=-4.33 M0=4894.46 fl=-195.42 Vl=-4.33 Ml=1.29 Pw=-0.62 Mw=-1.29

Total running time of the script: (0 minutes 1.112 seconds)

Gallery generated by Sphinx-Gallery