Note
Go to the end to download the full example code.
Simple triangular truss.
The system is statically determined and allows for easy validation of calculated deformation, reactions and internal forces.
Author: Peter Mackenzie-Helnwein
Setup
from femedu.examples import Example
from femedu.domain import System, Node
# from femedu.elements.linear import Truss
from femedu.elements.finite import Truss
from femedu.materials import FiberMaterial
from femedu.solver import NewtonRaphsonSolver, NewtonRaphsonSolverSparse
Create the example by subclassing the Example
class ExampleTruss01(Example):
def problem(self):
# initialize a system model
B = 6.0 * 12
H = 3.0 * 12
params = {'E': 10., 'A': 1., 'nu': 0.0, 'fy': 1.e30}
model = System()
# model.setSolver(NewtonRaphsonSolver())
model.setSolver(NewtonRaphsonSolverSparse())
# create nodes
nd0 = Node(0.0, 0.0)
nd1 = Node( B, 0.0)
nd2 = Node(0.5*B, H)
model.addNode(nd0, nd1, nd2)
# create elements
model.addElement(Truss(nd0, nd1, FiberMaterial(params))) # bottom 1
model.addElement(Truss(nd0, nd2, FiberMaterial(params))) # up right diag 1
model.addElement(Truss(nd1, nd2, FiberMaterial(params))) # up left diag 1
# define support(s)
nd0.fixDOF('ux', 'uy') # pin support left end
nd1.fixDOF('uy') # roller support right end
# add loads
# .. load only the upper nodes
nd2.setLoad([0.0, -1.0], ('ux', 'uy'))
# analyze the model
model.solve(verbose=True)
# write out report
model.report()
# create plots
model.plot(factor=1., filename="truss01_deformed.png")
model.beamValuePlot('f',filename="truss01_forces.png")
Run the example by creating an instance of the problem and executing it by calling Example.run()
if __name__ == "__main__":
ex = ExampleTruss01()
ex.run()
norm of the out-of-balance force: 1.0000e+00
norm of the out-of-balance force: 2.3898e-01
norm of the out-of-balance force: 8.1640e-02
norm of the out-of-balance force: 2.0865e-02
norm of the out-of-balance force: 1.4409e-03
norm of the out-of-balance force: 8.7150e-06
norm of the out-of-balance force: 3.2542e-10
+
System Analysis Report
=======================
Nodes:
---------------------
Node_24:
x: [0.000 0.000]
fix: ['ux', 'uy']
u: [0.000 -0.000]
Node_25:
x: [72.000 0.000]
fix: ['uy']
u: [5.693 -0.000]
Node_26:
x: [36.000 36.000]
P: [0.000 -1.000]
u: [2.847 -10.478]
Elements:
---------------------
Truss: Node_24 to Node_25:
material properties: FiberMaterial(Material)({'E': 10.0, 'A': 1.0, 'nu': 0.0, 'fy': 1e+30}) strain:0.0761046208575653 stress:{'xx': np.float64(0.761046208575653), 'yy': 0.0, 'zz': 0.0, 'xy': 0.0}
internal force: 0.761046208575653
Truss: Node_24 to Node_26:
material properties: FiberMaterial(Material)({'E': 10.0, 'A': 1.0, 'nu': 0.0, 'fy': 1e+30}) strain:-0.0910599435310268 stress:{'xx': np.float64(-0.910599435310268), 'yy': 0.0, 'zz': 0.0, 'xy': 0.0}
internal force: -0.910599435310268
Truss: Node_25 to Node_26:
material properties: FiberMaterial(Material)({'E': 10.0, 'A': 1.0, 'nu': 0.0, 'fy': 1e+30}) strain:-0.0910599435310268 stress:{'xx': np.float64(-0.910599435310268), 'yy': 0.0, 'zz': 0.0, 'xy': 0.0}
internal force: -0.910599435310268
Total running time of the script: (0 minutes 0.043 seconds)