Note
Go to the end to download the full example code.
3d truss example demonstrating large deformation analysis.
The system is statically determined and allows for easy validation of calculated deformation, reactions and internal forces.
Author: Tatsu Sweet
Setup
from femedu.examples import Example
from femedu.domain import System, Node
from femedu.elements.finite import Truss
from femedu.materials import FiberMaterial
from femedu.solver import NewtonRaphsonSolver
class ExampleTruss04(Example):
def problem(self):
# initialize a system model
params = {'E': 2100., 'A': 1., 'nu': 0.0, 'fy': 1.e30}
model = System()
# create nodes
H = 5
nd1 = Node(0.0, 5.0, 0.0)
nd2 = Node(9.5, 5.0, 0.0)
nd3 = Node(0.0, 0.0, 0.0)
nd4 = Node(9.5, 0.0, 0.0)
nd5 = Node(5.5, 3.75, H)
nd6 = Node(5.5, 1.25, H)
nodeList = [nd1, nd2, nd3, nd4, nd5, nd6]
model.addNode(*nodeList)
# create elements
model.addElement(Truss(nd1, nd5, FiberMaterial(params))) # bottom 1
model.addElement(Truss(nd1, nd6, FiberMaterial(params))) # up right diag 1
model.addElement(Truss(nd2, nd5, FiberMaterial(params))) # up left diag 1
model.addElement(Truss(nd3, nd6, FiberMaterial(params))) # bottom 1
model.addElement(Truss(nd4, nd5, FiberMaterial(params))) # up right diag 1
model.addElement(Truss(nd4, nd6, FiberMaterial(params))) # up left diag 1
model.addElement(Truss(nd5, nd6, FiberMaterial(params))) # bottom 1
# define support(s)
translation_dofs = ('ux', 'uy', 'uz')
for node in [nd1, nd2, nd3, nd4]:
node.fixDOF(*translation_dofs)
# add loads
nd5.setLoad((-100.0,), ('uz',))
# analyze the model
model.solve()
# write out report
model.report()
# create plots
model.plot(factor=1.)
Run the example by creating an instance of the problem and executing it by calling Example.run()
if __name__ == "__main__":
ex = ExampleTruss04()
ex.run()
System Analysis Report
=======================
Nodes:
---------------------
Node_39:
x: [0.000 5.000 0.000]
fix: ['ux', 'uy', 'uz']
u: [0.000 0.000 0.000]
Node_40:
x: [9.500 5.000 0.000]
fix: ['ux', 'uy', 'uz']
u: [0.000 0.000 0.000]
Node_41:
x: [0.000 0.000 0.000]
fix: ['ux', 'uy', 'uz']
u: [0.000 0.000 0.000]
Node_42:
x: [9.500 0.000 0.000]
fix: ['ux', 'uy', 'uz']
u: [0.000 0.000 0.000]
Node_43:
x: [5.500 3.750 5.000]
P: [0.000 0.000 -100.000]
u: [-0.087 -0.013 -0.250]
Node_44:
x: [5.500 1.250 5.000]
u: [-0.003 -0.012 0.001]
Elements:
---------------------
Truss: Node_39 to Node_43:
material properties: FiberMaterial(Material)({'E': 2100.0, 'A': 1.0, 'nu': 0.0, 'fy': 1e+30}) strain:-0.030517537429943266 stress:{'xx': np.float64(-64.08682860288086), 'yy': 0.0, 'zz': 0.0, 'xy': 0.0}
internal force: -64.08682860288086
Truss: Node_39 to Node_44:
material properties: FiberMaterial(Material)({'E': 2100.0, 'A': 1.0, 'nu': 0.0, 'fy': 1e+30}) strain:0.0004892637349850222 stress:{'xx': np.float64(1.0274538434685465), 'yy': 0.0, 'zz': 0.0, 'xy': 0.0}
internal force: 1.0274538434685465
Truss: Node_40 to Node_43:
material properties: FiberMaterial(Material)({'E': 2100.0, 'A': 1.0, 'nu': 0.0, 'fy': 1e+30}) strain:-0.02040406329686611 stress:{'xx': np.float64(-42.84853292341884), 'yy': 0.0, 'zz': 0.0, 'xy': 0.0}
internal force: -42.84853292341884
Truss: Node_41 to Node_44:
material properties: FiberMaterial(Material)({'E': 2100.0, 'A': 1.0, 'nu': 0.0, 'fy': 1e+30}) strain:-0.00044111478214312256 stress:{'xx': np.float64(-0.9263410425005574), 'yy': 0.0, 'zz': 0.0, 'xy': 0.0}
internal force: -0.9263410425005574
Truss: Node_42 to Node_43:
material properties: FiberMaterial(Material)({'E': 2100.0, 'A': 1.0, 'nu': 0.0, 'fy': 1e+30}) strain:-0.01687382151131819 stress:{'xx': np.float64(-35.435025173768196), 'yy': 0.0, 'zz': 0.0, 'xy': 0.0}
internal force: -35.435025173768196
Truss: Node_42 to Node_44:
material properties: FiberMaterial(Material)({'E': 2100.0, 'A': 1.0, 'nu': 0.0, 'fy': 1e+30}) strain:1.7248299270645772e-06 stress:{'xx': np.float64(0.003622142846835612), 'yy': 0.0, 'zz': 0.0, 'xy': 0.0}
internal force: 0.003622142846835612
Truss: Node_43 to Node_44:
material properties: FiberMaterial(Material)({'E': 2100.0, 'A': 1.0, 'nu': 0.0, 'fy': 1e+30}) strain:0.005301537509333449 stress:{'xx': np.float64(11.133228769600242), 'yy': 0.0, 'zz': 0.0, 'xy': 0.0}
internal force: 11.133228769600242
Total running time of the script: (0 minutes 0.087 seconds)