Benchmark problem: Wedged Plate - geometrically linear theory

Features

  • Using PatchMesher to model the plate

  • nodal boundary conditions using location-based search

  • face loads using location-based search

  • linear (small deformation) Triangle and Quad elements

  • history plot feature

import numpy as np

from femedu.examples import Example

from femedu.domain import System
from femedu.solver import NewtonRaphsonSolver, LinearSolver
from femedu.elements.linear import Quad, Triangle
from femedu.materials import PlaneStress
from femedu.mesher import *


class Example19_Benchmark01(Example):

    def problem(self):
        # ========== setting mesh parameters ==============

        Nx = 8  # number of elements in the mesh
        Ny = 4  # number of elements in the mesh
        L1 = 48.0
        L2 = 44.0
        L3 = 16.0

        # ========== setting material parameters ==============

        params = dict(
            E=1000.,  # Young's modulus
            nu=0.3,  # Poisson's ratio
            t=1.00  # thickness of the plate
        )

        # ========== setting load parameters ==============

        px = 0.0          # uniform load normal to x=Lx
        pxy = 100.0 / L3  # uniform shear load on x=L1

        # ========== setting analysis parameters ==============

        USE_NONLINEAR_SOLVER = False  # set to True if using an inelastic material

        target_load_level = 5.00  # reference load
        max_steps = 3  # number of load steps: 2 -> [0.0, 1.0]

        #
        # ==== Build the system model ====
        #

        model = System()
        if USE_NONLINEAR_SOLVER:
            model.setSolver(NewtonRaphsonSolver())
        else:
            model.setSolver(LinearSolver())

        # create nodes

        mesher = PatchMesher(model, (0., 0.), (L1, L2), (L1, L2 + L3), (0., L2))
        nodes, elements = mesher.quadMesh(Nx, Ny, Quad, PlaneStress(params))

        mesher.shift(1.25 * L1, 0.0)
        nodes2, elements2 = mesher.triangleMesh(Nx, Ny, Triangle, PlaneStress(params))

        nodes += nodes2
        elements += elements2

        # ==== Apply boundary conditions ====

        #
        # the left model
        #

        ## fix left side
        for node, _ in model.findNodesAlongLine((0.0, 0.0), (0.0, 1.0)):
            node.fixDOF('ux', 'uy')

        ## define loads ...
        for _, face in model.findFacesAlongLine((L1, 0.0), (0.0, 1.0), orientation=+1):
            face.setLoad(px, pxy)

        ## locate the node at the centerline
        nodeA, dist = model.findNodesAt((L1, L2 + L3))[0]

        #
        # the right model
        #

        ## fix left side
        for node, _ in model.findNodesAlongLine((1.25 * L1, 0.0), (0.0, 1.0)):
            node.fixDOF('ux', 'uy')

        ## define loads ...
        for _, face in model.findFacesAlongLine((2.25 * L1, 0.0), (0.0, 1.0), orientation=+1):
            face.setLoad(px, pxy)

        ## locate the node at the centerline
        nodeB, dist = model.findNodesAt((2.25 * L1, L2 + L3))[0]

        # model.report()

        # set up a recorder
        model.initRecorder(variables=['ux', 'uy'], nodes=[nodeA, nodeB])
        model.startRecorder()

        model.plot(factor=0, title="undeformed system", filename="benchmark01_undeformed.png", show_bc=1, show_loads=1)

        for lf in np.linspace(0.0, target_load_level, max_steps+1):
            model.setLoadFactor(lf)
            model.solve(verbose=True)

            # model.report()

        model.plot(factor=1., filename=f"benchmark01_deformed_lf{lf:.2f}.png", show_bc=1, show_loads=1,
                   show_reactions=1)
        #
        # model.valuePlot('ux', filename=f"benchmark01_ux_lf{lf:.2f}.png")
        # model.valuePlot('uy', show_mesh=True, filename=f"benchmark01_uy_lf{lf:.2f}.png")
        model.valuePlot('sxx', show_mesh=True)
        model.valuePlot('syy', show_mesh=True)
        model.valuePlot('sxy', show_mesh=True)

        # create a history plot for the end node

        # model.historyPlot('lam', ['ux','uy'], nodes=[nodeA,nodeA])
        # model.historyPlot('lam', ['ux','uy'], nodes=[nodeB,nodeB])
        model.historyPlot('lam', ['ux', 'uy', 'ux', 'uy'], nodes=[nodeA, nodeA, nodeB, nodeB])

Run the example by creating an instance of the problem and executing it by calling Example.run()

if __name__ == "__main__":
    ex = Example19_Benchmark01()
    ex.run()
  • undeformed system
  • Deformed System (magnification=1.00)
  • Contours of '$\sigma_{xx}$'
  • Contours of '$\sigma_{yy}$'
  • Contours of '$\sigma_{xy}$'
  • Load History Plot
Recorder.addData: 'stability' not initialized by the recorder: ignored
Recorder.addData: 'stability' not initialized by the recorder: ignored
Recorder.addData: 'stability' not initialized by the recorder: ignored
Recorder.addData: 'stability' not initialized by the recorder: ignored

Total running time of the script: (0 minutes 0.395 seconds)

Gallery generated by Sphinx-Gallery